

Real Numbers

What about the other numbers?

So far we know how to store **integers Whole Numbers**

But what if we want to store **real numbers**Numbers **with decimal fractions**

Even 27.5 needs another way to represent it.

This method is called **floating point representation**

Fixed Notation

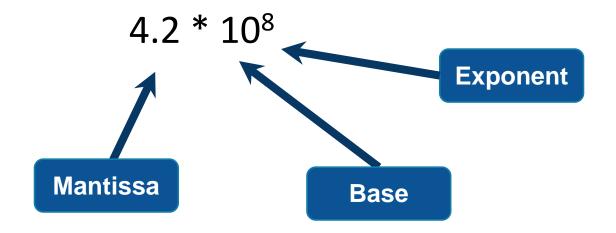
We are accustomed to using a **fixed notation** where the decimal point is fixed and we know that any numbers to the right of the decimal point are the decimal portion and to the left is the integer part

E.g. 10.75

10 is the Integer Portion and 0.75 is the decimal portion

Floating Point Representation

The structure of a **floating point**(real) number is as follows:



Only the **mantissa** and the **exponent** are **stored**. The **base is implied** (known already)

As it is not stored this will save memory capacity

IEEE standard

There is a IEEE standard that defines the structure of a floating point number

IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008)

It defines 4 main sizes of floating point numbers 16, 32, 64 and 128 bit

Sometimes referred to as Half, Single, Double and Quadruple precision

A 32 bit floating point number

Sign	Exponent	Mantissa
1bit	8 bits	23 bits

S is a sign bit

0 = positive

1 = negative

23 bits for the mantissa

8 bits for the **exponent**

Lets look at an example

We want the format of a number to be in **m x b**^e

We want the mantissa to be a single decimal digit

Example

$$3450.00 = 3.45 \times 10^3$$

The **exponent** is **3** as the decimal place has been moved 3 places to the left

Decimal fractions

First we will look at how a decimal number is made up: 173.75

Hundreds	Tens	Units	Decimal place	Tenths	Hundredths
1	7	3	•	7	5

10 ²	10 ¹	100	Decimal place	10-1	10-2
1	7	3	•	7	5

Binary fractions

Then look at how the same number could be stored in binary: 1010 1101

128	64	32	16	8	4	2	1	0.5	0.25
1	0	1	0	1	1	0	1	1	1

This number is constructed as shown above (in a fixed point notation). These values come from

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	•	2 ⁻¹	2 ⁻²
1	0	1	0	1	1	0	1		1	1

But the problem is

We don't actually have a decimal point in binary...

A worked example

In decimal first 250.03125

First convert the **integer** part of the **mantissa** into binary (as you have done previously)

250 = **1111 1010**

Now to convert the **decimal portion** of the mantissa .03125

Example (cont)

Decimal fraction => .03125

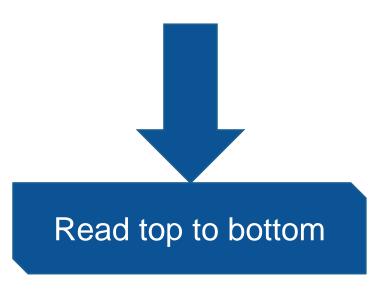
Multiply and use any remainder over 1 as a carry forward. Continue until you reach 1.0 with no carry over

$$0.03125 * 2 = 0 r 0.0625$$

 $0.0625 * 2 = 0 r 0.125$
 $0.125 * 2 = 0 r 0.25$

$$0.5 * 2 =$$
 1 r 0

Binary fraction = **0.00001**

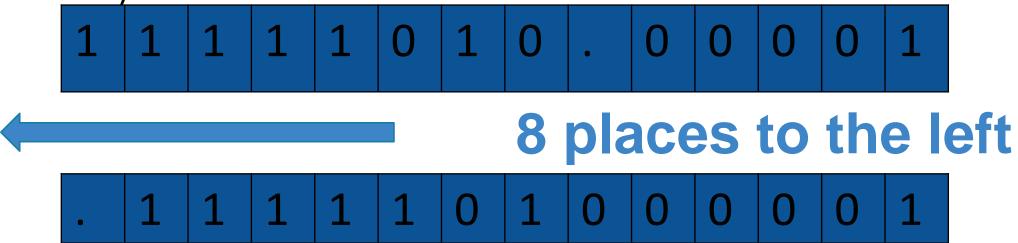


So far

So far we have: **1111 1010.00001** (250.03125)

But we need it in the format: .11111 0100 0001 (the decimal point to the

left of the 1)



So the exponent is 8 (1000)

C†2

So back to our example

Mantissa =.11111 0100 0001 (2.5003125)

Exponent = $0000\ 1000\ (8)$

Sign Bit = 0

And the number is **positive** so the **sign bit is 0**

In 32 bit representation there is

- 8 bits for the exponent
- 23 bits for the mantissa

We will pad the **left** of the exponent with 0's up to 8 bits

We will pad the **right** of the mantissa with 0's up to **23** bits

S	Exponent	Mantissa
0	0000 1000	11111 0100 00010000000000
1bit	8 bits	23 bits

Further Example 1

102.9375

Sign =
$$0 \text{ (+ve)}$$
 Integer = $102 = 1100110$

Decimal portion = .1111 -> Number = **1100110.1111 ->** Needs to be .11001101111

Exponent = 7 = 00000111

Further Example 2

250.75

Decimal portion = .11 -> Number = **11111010.11 ->** Needs to be .1111101011

Exponent = 8 = 00001000

What about small numbers?

What if we are storing 0.0625?

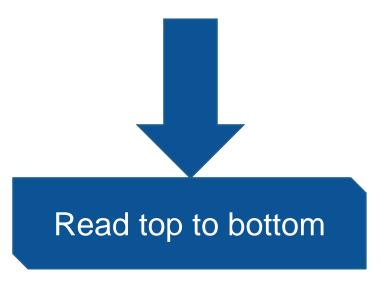
The decimal point doesn't need moved to the left it needs moved to the right...

Example (cont)

Decimal fraction => .0625

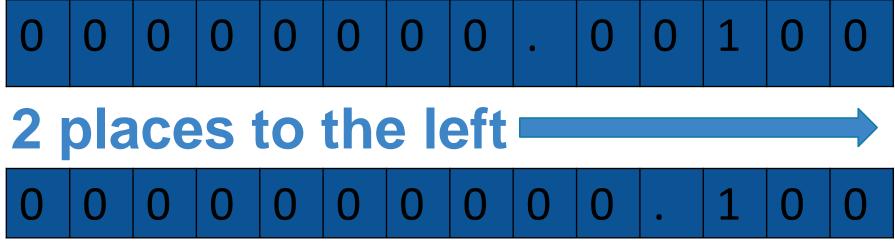
Multiply and use any remainder over 1 as a carry forward. Continue until you reach 1.0 with no carry over

Binary fraction = **0.001**



So far

(leading bit after the . has to be a 1)



So the exponent is -2

Example

So back to our example

Mantissa = 0.1 (0.0625)

Exponent = 1111 1110 (-2)

Sign Bit = 0

In 32 bit representation there is **23** bits for the mantissa

We will pad the **right** of the number with 0's up to **23** bits

And the number is **positive** so the **sign bit is 0**

S	Exponent	Mantissa
0	1111 1110	10000 0000 0000000000000000000
1bit	8 bits	23 bits

If the Exponent is negative

In reality there are other ways that this is dealt with (offset exponents for those that are interested)

But for the purpose of the course we will store a negative exponent in 8 bit two's complement:

```
2 = 00000010
```

What about really small numbers?

What if we are storing 0.0009765625?

The integer portion is **0**

The decimal portion is: .000000001

So our number need to be **0.1**

We need to shift the exponent 10 places to the right

This means we need to store -10 as the exponent (two's complement)

Further Example 3

0.0009765625?

Sign =
$$0 \text{ (+ve)}$$
 Integer = $0 = 0000000$

Decimal portion = .0000000001 -> Number = 0.000000001 -> Needs to be .1

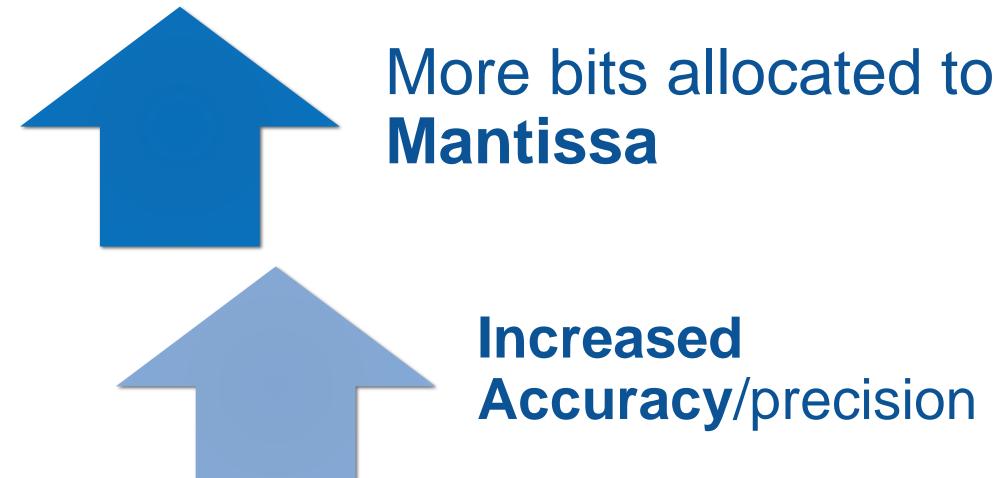
Exponent =
$$-10$$
 = (+10 = 0000 1010) -10 = 1111 0110

Problems with floating point

What if we try to store 25.333?

We need much more bits in the mantissa to deal with this...

Increased Mantissa allocation



Increased Accuracy/precision

Increased Exponent allocation

More bits allocated to Exponent

Range

Mnemonic

MARE – Mantissa Accuracy Range Exponent

Different Precision Numbers

Single Precision (32 bit)

S	Exponent	Mantissa			
1bit	8 bits	23 bits			
1.18×10^{-38} to 3.40×10^{38}					

Double precision (64 bit)

S	Exponent	Mantissa				
1bit	11 bits	52 bits				
2.23×10^{-308} to 1.79×10^{308}						

Summary

If you increase the amount of bits allocated to the Mantissa you increase the accuracy/precision

If you increase the amount of bits allocated to the **exponent** you increase the **range** of the number

Mnemonic

MARE - Mantissa Accuracy Range Exponent

Summary - Single precision Floating point

- Create the mantissa portion (The integer part)
- 2. Create the decimal fraction
- 3. Calculate **exponent** by moving decimal point till number is in the format 1.xxxxx
- 4. Convert exponent to two's complement if is negative (moving the point to the right)
- 5. Add the sign bit

$$0 = +ve$$

$$1 = -ive$$

6. Write in the format sign exponent mantissa