
Computer Systems

Real Numbers

Computer Systems

What about the other numbers?

So far we know how to store integers
Whole Numbers

But what if we want to store real numbers
Numbers with decimal fractions

Even 27.5 needs another way to represent it.

This method is called floating point representation

Computer Systems

Fixed Notation

We are accustomed to using a fixed notation where the decimal point is
fixed and we know that any numbers to the right of the decimal point are
the decimal portion and to the left is the integer part

E.g. 10.75

10 is the Integer Portion and 0.75 is the decimal portion

Computer Systems

Floating Point Representation

The structure of a floating point(real) number is as follows:

4.2 * 108

Only the mantissa and the exponent are stored. The base is implied (known
already)
As it is not stored this will save memory capacity

Exponent

Mantissa Base

Computer Systems

IEEE standard

There is a IEEE standard that defines the structure of a floating point
number
IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008)

It defines 4 main sizes of floating point numbers
16, 32, 64 and 128 bit

Sometimes referred to as Half, Single, Double and Quadruple precision

Computer Systems

A 32 bit floating point number

S is a sign bit
0 = positive
1 = negative

23 bits for the mantissa
8 bits for the exponent

Sign Exponent Mantissa

1bit 8 bits 23 bits

Computer Systems

Lets look at an example

We want the format of a number to be in
m x be

We want the mantissa to be a single decimal digit

Example
3450.00 = 3.45 x 103

The exponent is 3 as the decimal place has been moved 3 places to the left

Computer Systems

Decimal fractions

First we will look at how a decimal number is made up: 173.75

Hundreds Tens Units Decimal
place

Tenths Hundredths

1 7 3 . 7 5

102 101 100 Decimal
place

10-1 10-2

1 7 3 . 7 5

Computer Systems

Binary fractions

Then look at how the same number could be stored in binary: 1010 1101

This number is constructed as shown above (in a fixed point notation).
These values come from

128 64 32 16 8 4 2 1 . 0.5 0.25

1 0 1 0 1 1 0 1 1 1

27 26 25 24 23 22 21 20 . 2-1 2-2

1 0 1 0 1 1 0 1 1 1

Computer Systems

But the problem is

We don’t actually have a decimal point in binary...

Computer Systems

A worked example

In decimal first
250.03125

First convert the integer part of the mantissa into binary (as you have done
previously)

250 = 1111 1010

Now to convert the decimal portion of the mantissa
.03125

Computer Systems

Example (cont)

Decimal fraction => .03125
Multiply and use any remainder over 1 as a carry forward. Continue until you
reach 1.0 with no carry over

0.03125 * 2 = 0 r 0.0625
0.0625 * 2 = 0 r 0.125
0.125 * 2 = 0 r 0.25
0.25 * 2 = 0 r 0.5
0.5 * 2 = 1 r 0

Binary fraction = 0.00001
Read top to bottom

Computer Systems

So far

So far we have : 1111 1010.00001 (250.03125)
But we need it in the format : .11111 0100 0001 (the decimal point to the
left of the 1)

So the exponent is 8 (1000)

8 places to the left

1 1 1 1 1 0 1 0 . 0 0 0 0 1

. 1 1 1 1 1 0 1 0 0 0 0 0 1

Computer Systems

Example

So back to our example
Mantissa =.11111 0100 0001 (2.5003125)
Exponent = 0000 1000 (8)
Sign Bit = 0

And the number is positive so the sign bit is 0

S Exponent Mantissa

0 0000 1000 11111 0100 000100000000000

1bit 8 bits 23 bits

In 32 bit representation there is

❏ 8 bits for the exponent

❏ 23 bits for the mantissa

We will pad the left of the

exponent with 0’s up to 8 bits

We will pad the right of the

mantissa with 0’s up to 23 bits

Computer Systems

Further Example 1

102.9375

Sign = 0 (+ve) Integer = 102 = 1100110

Decimal portion = .1111 -> Number = 1100110.1111 -> Needs to be
.11001101111

Exponent = 7 = 00000111

Number (32 bit Single Precision) = 0 00000111 11001101111000000000000

Computer Systems

Further Example 2

250.75

Sign = 0 (+ve) Integer = 250 = 11111010

Decimal portion = .11 -> Number = 11111010.11 -> Needs to be
.1111101011

Exponent = 8 = 00001000

Number (32 bit Single Precision) = 0 00001000 11111010110000000000000

Computer Systems

What about small numbers?

What if we are storing 0.0625?

The decimal point doesn’t need moved to the left it needs moved to the
right…

Computer Systems

Example (cont)

Decimal fraction => .0625
Multiply and use any remainder over 1 as a carry forward. Continue until you
reach 1.0 with no carry over

0.0625 * 2 = 0 r 0.125
0.125 * 2 = 0 r 0.25
0.25 * 2 = 0 r 0.5
0.5 * 2 = 1 r 0.0

Binary fraction = 0.001
Read top to bottom

Computer Systems

So far

So far we have : 0.001 (0.0625)
But we need it in the format .10000000000000000000000

(leading bit after the . has to be a 1)

So the exponent is -2

2 places to the left

0 0 0 0 0 0 0 0 . 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 . 1 0 0

Computer Systems

Example

So back to our example
Mantissa =0.1 (0.0625)
Exponent = 1111 1110 (-2)
Sign Bit = 0

And the number is positive so the sign bit is 0

S Exponent Mantissa

0 1111 1110 10000 0000 000000000000000

1bit 8 bits 23 bits

In 32 bit representation there is 23 bits

for the mantissa

We will pad the right of the number

with 0’s up to 23 bits

Computer Systems

If the Exponent is negative

In reality there are other ways that this is dealt with (offset exponents for
those that are interested)

But for the purpose of the course we will store a negative exponent in 8 bit
two’s complement:

2 = 0000 0010

-2 = 1111 1110

Computer Systems

What about really small numbers?

What if we are storing 0.0009765625?

The integer portion is 0

The decimal portion is: .0000000001

So our number need to be 0.1

We need to shift the exponent 10 places to the right

This means we need to store -10 as the exponent (two's complement)

Computer Systems

Further Example 3

0.0009765625?

Sign = 0 (+ve) Integer = 0 = 0000000

Decimal portion = .0000000001 -> Number = 0.0000000001 -> Needs to be
.1

Exponent = -10 = (+10 = 0000 1010) -10 = 1111 0110

Number (32 bit Single Precision) = 0 1111 0110
01000000000000000000000

Computer Systems

Problems with floating point

What if we try to store 25.333?

We need much more bits in the mantissa to deal with this…

Computer Systems

Increased Mantissa allocation

More bits allocated to
Mantissa

Increased
Accuracy/precision

Computer Systems

Increased Exponent allocation

More bits allocated
to Exponent

Increased
Range

Computer Systems

Mnemonic

MARE – Mantissa Accuracy Range Exponent

Computer Systems

Different Precision Numbers

Single Precision (32 bit)

Double precision (64 bit)

S Exponent Mantissa

1bit 8 bits 23 bits

1.18 × 10–38 to 3.40 × 1038

S Exponent Mantissa

1bit 11 bits 52 bits

2.23 × 10–308 to 1.79 × 10308

Computer Systems

Summary

If you increase the amount of bits allocated to the Mantissa you increase the
accuracy/precision

If you increase the amount of bits allocated to the exponent you increase
the range of the number

Mnemonic
MARE - Mantissa Accuracy Range Exponent

Computer Systems

Summary - Single precision Floating point

1. Create the mantissa portion (The integer part)
2. Create the decimal fraction
3. Calculate exponent by moving decimal point till number is in the format

1.xxxxx
4. Convert exponent to two’s complement if is negative (moving the point to

the right)
5. Add the sign bit

0 = +ve
1 = -ive

6. Write in the format sign exponent mantissa

