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What about the other numbers?

So far we know how to store integers
Whole Numbers

But what if we want to store real numbers
Numbers with decimal fractions

Even 27.5 needs another way to represent it.

This method is called floating point representation
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Fixed Notation

We are accustomed to using a fixed notation where the decimal point is
fixed and we know that any numbers to the right of the decimal point are
the decimal portion and to the left is the integer part

E.g. 10.75

10 is the Integer Portion and 0.75 is the decimal portion

Computer Systems —




Floating Point Representation

The structure of a floating point(real) number is as follows:

NS

4.2 * 108

Only the mantissa and the exponent are stored. The base is implied (known
already)

As it is not stored this will save memory capacity
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IEEE standard

There is a IEEE standard that defines the structure of a floating point
number

|IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008)

It defines 4 main sizes of floating point numbers
16, 32, 64 and 128 bit

Sometimes referred to as Half, Single, Double and Quadruple precision
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A 32 bit floating point number

Sign Exponent Mantissa
1bit 8 bits 23 bits
S is a sign bit
O = positive
1 = negative

23 bits for the mantissa
8 bits for the exponent
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Lets look at an example

We want the format of a number to be in
m X b€

We want the mantissa to be a single decimal digit

Example
3450.00 = 3.45 x 103

The exponent is 3 as the decimal place has been moved 3 places to the left
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Decimal fractions

First we will look at how a decimal number is made up: 173.75
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Binary fractions

Then look at how the same number could be stored in binary: 1010 1101

1 0 1 0 1 1 0 1 1 1

This number is constructed as shown above (in a fixed point notation).
These values come from

Computer Systems




But the problem is

We don’t actually have a decimal point in binary...
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A worked example

In decimal first
250.03125

First convert the integer part of the mantissa into binary (as you have done
previously)

250=11111010

Now to convert the decimal portion of the mantissa
.03125
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Example (cont)

Decimal fraction =>.03125
Multiply and use any remainder over 1 as a carry forward. Continue until you

reach 1.0 with no carry over

0.03125 * 2 = 0r 0.0625
0.0625 * 2 = 0r0.125
0.125*2= 0r0.25

0.25* 2 = 0r0.5
05*2= 1r0

Read top to bottom

Binary fraction = 0.00001
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So far

So far we have :1111 1010.00001 (250.03125)
But we need it in the format :.11111 0100 0001 (the decimal point to the

left of the 1|

— 8 places to the left

So the exponent is 8 (1000)
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Example

In 32 bit representation thereis

So back to our example a8 bits for the exponent

Mantissa =.11111 0100 0001 (2.5003125) | - 23bitsforthemantissa

Exponent = 0000 1000 (8) We will pad the left of the
Sign Bit=0 exponent with 0’s up to 8 bits
We will pad the right of the
And the number is positive so the sign bit is 0 mantissa with 0’s up to 23 bits 7
0 0000 1000 11111 0100 000100000000000
1bit 8 bits 23 bits

Computer Systems




Further Example 1

102.9375
Sign = 0 (+ve) Integer =102 = 1100110

Decimal portion =.1111 -> Number = 1100110.1111 -> Needs to be
.11001101111

Exponent = 7 =00000111
Number (32 bit Single Precision) =0 00000111 11001101111000000000000
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Further Example 2

250.75
Sign = 0 (+ve) Integer =250 =11111010

Decimal portion = .11 -> Number =11111010.11 -> Needs to be
1111101011

Exponent = 8 =00001000
Number (32 bit Single Precision) =0 00001000 11111010110000000000000
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What about small numbers?

What if we are storing 0.06257

The decimal point doesn’t need moved to the left it needs moved to the
right...
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Example (cont)

Decimal fraction => .0625
Multiply and use any remainder over 1 as a carry forward. Continue until you

reach 1.0 with no carry over

0.0625 * 2 = 0r0.125
0.125*2 = 0r0.25
0.25 * 2 = 0r0.5
05*2= 1r0.0

Read top to bottom

Binary fraction = 0.001
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So far

So far we have :0.001 (0.0625)
But we need it in the format .10000000000000000000000

(leading bit after the . has to be a 1)

2 places to the |eft n—————— )

So the exponent is -2
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Example

So back to our example
Mantissa =0.1 (0.0625)

Exponent = 1111 1110 (-2) for the mantissa
Sigh Bit=0

And the number is positive so the sign bit is Q

with 0’s up to 23 bits

In 32 bit representation there is 23 bits

We will pad the right of the number

4

0

1111 1110

10000 0000 000000000000000

1bit

8 bits

23 bits
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If the Exponent is negative

In reality there are other ways that this is dealt with (offset exponents for

those that are interested)

But for the purpose of the course we will store a negative exponent in 8 bit

two’s complement:
2 = 0000 0010
-2 = 1111 1110
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What about really small numbers?

What if we are storing 0.00097656257?

The integer portionis 0

The decimal portion is: .0000000001

So our number need to be 0.1

We need to shift the exponent 10 places to the right

This means we need to store -10 as the exponent (two's complement)
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Further Example 3

0.0009765625?
Sign = 0 (+ve) Integer = 0 = 0000000

Decimal portion =.0000000001 -> Number = 0.0000000001 -> Needs to be
|

Exponent =-10 = (+10 =0000 1010) -10=1111 0110

Number (32 bit Single Precision) =0 1111 0110
01000000000000000000000
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Problems with floating point

What if we try to store 25.3337

We need much more bits in the mantissa to deal with this...
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Increased Mantissa allocation

More bits allocated to
Mantissa

Increased
Accuracy/precision
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Increased Exponent allocation

More bits allocated
{0 Exponent

Increased
Range
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Mnemonic
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Different Precision Numbers

Single Precision (32 bit)

1bit 8 bits 23 bits

1.18 x 1038 t0 3.40 x 1038

Double precision (64 bit)

1bit 11 bits 52 bits

2.23 x 107398 t0 1.79 x 10308
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Summary

If you increase the amount of bits allocated to the Mantissa you increase the
accuracy/precision

If you increase the amount of bits allocated to the exponent you increase
the range of the number

Mnemonic
MARE - Mantissa Accuracy Range Exponent
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Summary - Single precision Floating point

1. Create the mantissa portion (The integer part)

2. Create the decimal fraction

3. Calculate exponent by moving decimal point till number is in the format
1. XXXXX

a. Convert exponent to two’s complement if is negative (moving the point to
the right)

5. Add the sign bit
0 = +ve
1 =-ive

6. Write in the format sign exponent mantissa
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