
1

Computing Science

Software Design & Development

Theory Notes

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjonOHygY3dAhWRaVAKHZifCeYQjRx6BAgBEAU&url=https://blogs.glowscotland.org.uk/nl/ColtnessHS-ComputingScience/2016/04/09/higher-design-notations-revision/&psig=AOvVaw1kx--CjfhTJVUrKb2phsKX&ust=1535451812350762

2

Contents

Development Methodologies .. 4

Development Methodologies ... 5

Iterative Waterfall Model ... 5

Top-Down Design / Stepwise Refinement .. 6

Agile Methodologies ... 7

Iterative vs Agile .. 9

Analysis ... 11

Analysis Stage .. 12

Design ... 14

Design Techniques .. 15

Pseudocode ... 15

Structure diagrams .. 16

Wireframe (User Interface Design) ... 17

Implementation .. 18

Sub-Programs .. 19

Why Create Sub-Programs? .. 20

Types of Sub-Program ... 21

Procedures .. 21

Functions ... 22

Re-Using Sub-Programs... 23

Predefined Functions .. 25

Parameter Passing .. 26

What is parameter passing? ... 26

Actual and Formal Parameters? .. 27

Scope of Variables ... 29

Global Variables .. 29

Local Variables .. 30

Data Types & Structures ... 31

Data Types ... 31

Data Structures: 1 Dimensional Array ... 31

Data Structures: String .. 31

Data Structures: Records / Array of Records .. 32

Standard Algorithms ... 34

Standard Algorithms (Using Arrays) .. 34

Find Minimum ... 34

Find Maximum .. 35

3

Count Occurrences .. 36

Linear Search ... 37

Standard Algorithms (Using Record Structures) ... 38

Find Minimum ... 38

Find Maximum .. 39

Count Occurrences .. 40

Linear Search ... 41

Sequential File Operations .. 42

Input from Sequential Files ... 42

Output to Sequential Files .. 43

Sequential File Operations .. 43

Testing ... 44

Testing Stage ... 45

Test Plan .. 45

Error Types and Debugging ... 46

Dry Run .. 47

Trace Table .. 48

Trace Tools .. 48

Breakpoints ... 49

Watchpoint ... 49

Evaluation .. 50

Evaluation Stage .. 51

Fitness for Purpose ... 51

Efficient use of coding constructs ... 51

Usability .. 51

Maintainability .. 52

Robustness .. 52

4

Development
Methodologies

5

Development Methodologies

Waterfall Model

In the Waterfall Model, software is developed in a sequence of stages.

Each stage takes information from the previous stage and provides information to
the next.

There are seven stages to this software development process.

Software development is an iterative
process.

At any point, it may be necessary to revisit
earlier stages.

This could be in order to make
improvements due to new information or the
presence of errors.

6

Top-Down Design / Stepwise Refinement

Top-down design involves identifying an overall problem and breaking it down into
smaller sub-problems (main steps).

The process of stepwise refinement is then used to break the sub-problems down
until each one is small enough that they are manageable.

Top-down design emphasises planning and a complete understanding of the system.

No coding should take place until a sufficient level of detail has been reached in the
design.

Each sub-problem is coded as a module however this delays testing of the functional
units until significant design is complete.

7

Agile Methodologies

Agile development emphasises real time, face-to-face communication involving all
the people necessary to finish the software.

Very little written documentation is produced.

Software is developed in short iterations, each one like a miniature software project
of its own.

The purpose of a single iteration is not to produce the final completed solution, but to
add additional functionality that produces working software. After each iteration the
project priorities are then re-evaluated.

Top-down attempts to produce software by assuming a perfect understanding of the
client’s requirements from the start. In reality however, it rarely delivers what the
client wants as the client often doesn’t know exactly what they want until they see it.

Agile methodologies embrace iterations (Sprints) where small teams work to
develop working software that builds on the previous iteration.

During each iteration, working software is produced following which the requirements
for the next iteration can be evaluated.

8

Sprints

• A sprint is a planned delivery schedule for an aspect of the system. Within a
sprint the principles of analysis, design, implementation and testing are used.

• Prototyping is also likely, particularly during the early phase of a sprint.

• Sprints are carried out for each area of development, so rather than having a
rigid set of steps to follow for the development of the entire system, several
steps are repeated in one sprint and then carried out again in the next sprint.

Agile Disadvantages

• The main drawback of agile methods is that following a sequence of sprints
and engaging in near daily communication is very time consuming.

• The emphasis on team work and communication in a face to face manner
means that long term, large scales projects are often unrealistic.

• Agile methods tend to suit small scale development better than large scale
development.

9

Iterative vs Agile

Iterative (Waterfall Model) Agile

Client Interaction

The client is heavily involved
in the initial analysis stage
and at the end of
development, when
evaluating if the software
meets their needs and
matches the agreed
specification.

The client is involved
throughout the process, giving
constant feedback on
prototypes of the software
during development. This
feedback is acted upon, quickly
ensuring the software evolves
throughout the project.
Changing goals during the
development can be positive in
terms of final client satisfaction
with the product.

Teamwork

Teams of analysts,
programmers, testers and
documenters work
independently on each phase
of development. Teams
mainly work in isolation with
some communication
required between each
phase.

Teams of developers
communicate and collaborate,
rather than teams of experts
operating in isolation.
During a project, fast, face-to-
face communication between
individuals with different skills is
an important factor in
progressing the project quickly.

Documentation

A detailed project
specification is created at the
beginning of a project.
Significant time is spent
during the project on design,
program commentary and
test plans.

While modelling solutions
remains important, creating
large documents that are never
updated or referred to again
upon completion of the project
are not.

Agile focuses on reducing
documentation. It spends time
on small cycles of coding,
testing and adapting to change.

Any documentation produced
(for example internal
commentary in code) should
focus purely on progressing the
project.

10

Measurement of
progress

Follows a strict plan, with
progress measured against
timescales set at the
beginning of the project.

Breaks a project down into a
series of short development
goals (often called “sprints”).
This involves cross-functional
teams working on: planning,
analysis, design, coding, unit
testing, and acceptance testing.
Progress is measured by the
time it takes to produce
prototypes or working
components of the software.
Agile focuses on delivering
software as quickly as possible.

Adaptive vs
predictive

A predictive methodology,
focusing on analysing and
planning the future in detail
and catering for known risks.
Predictive methods rely on
effective early phase analysis
and if this goes very wrong,
the project may have difficulty
changing direction.
Predictive teams often
institute a change control
board to ensure they consider
only the most valuable
changes.

An adaptive methodology,
focusing on adapting quickly to
changing realities. When the
needs of a project change, an
adaptive team changes as well.
An adaptive team has difficulty
describing exactly what they
will do next week but could
report on which features they
plan for next month.
The further away a date is, the
vaguer an adaptive method is
about what will happen on that
date.

Testing

Testing is carried out when
the implementation phase of
the project is complete.

There is no recognised testing
phase, as testing is carried out
in conjunction with
programming.

11

Analysis

12

Analysis Stage

This is the start of the software development process and defines the extent of the
software task. This is called the software specification. It is often the basis of a legal
contract between the client (customer) and the software company writing the
software.

Your analysis should include the following:

• Purpose: a general description of the purpose of the software.

• Scope: a list of the deliverables that the project will hand over to the client
and/or end-user, eg design, completed program, test plan, test results and
evaluation report. It can also include any time limits for the project.

• Boundaries: the limits that help to define what is in the project and what is
not. It can also clarify any assumptions made by the software developers
regarding the client’s requirements.

• Functional requirements: the features and functions that must be delivered
by the system in terms of inputs, processes and outputs.

Inputs, Processes, Outputs

• Inputs are data items that must be entered by the user. Information we have
to ask the user for. This is the data that the program will take in.

• Processes are the things the program will do with the data items.
Calculations, formatting etc. are processes.

• Outputs are the data items that will be displayed by our program. This will
usually be the result of what the program is supposed to do.

13

Example:

Purpose

The purpose of this program is to take 20 pupil names, their prelim marks and their
assignment marks from a file. Calculate the percentage, and then find and display
the name and percentage of the pupil with the highest percentage.

Scope

This development involves creating a modular program. The deliverables include:

• detailed design of the program structure

• test plan with completed test data table

• working program

• results of testing

• evaluation report

This development work must be completed within 4 hours.

Boundaries

The program will read the pupil data (name, prelim mark and assignment mark) for
20 pupils from a sequential file. The data is accurate, so there is no need to
implement input validation.

The pupil with the top mark will be the pupil who has the highest percentage. The
only output needed is the name and percentage of the pupil with the highest
percentage.

Functional Requirements

These are defined in terms of the inputs, processes and outputs detailed below. All
inputs are imported from a sequential file and all outputs displayed on the screen.
The program is activated by double clicking on the file icon and then selecting “Run”
from the menu. Each process should be a separate procedure or function that is
called from the main program.

Inputs: Pupil name

Prelim mark
Assignment mark

Processes: Calculate the percentage for each pupil

Find the name and percentage of the pupil with the highest percentage

Outputs: Name of the pupil with the highest percentage

The highest percentage

14

Design

15

Design Techniques

Pseudocode

When using pseudocode to design efficient solutions to a problem, you must include
the following:

• Top level design — the major steps of the design. In the example below,
numbered from 1 to 4.

• Data flow — shows the information that must flow In or Out from the sub-
programs. In the example below, written to the right of the top level design.

• Refinements — break down the design from the top level when required. In
the example below, numbered as a sub-number of the top level.

Example:

The following design is for a program that will read the name, prelim mark and
coursework mark for a class of 20 pupils from a file. It will calculate a percentage
from each of their prelim marks and coursework marks added together. It will then
display the name of the pupil with the highest percentage and their percentage.

1 Get results (OUT: pupil name(), prelim mark(), course mark())
2 Calculate percentages (IN: prelim mark(), course mark() OUT: percentage())
3 Find position of pupil with top mark (IN: percentage() OUT: top position)
4 Display pupil with top mark (IN: pupil name(), top position)

1.1 Open marks file
1.2 Start fixed loop for each pupil
1.3 Get pupil name()
1.4 Get prelim mark()
1.5 Get course mark()
1.6 End fixed loop
1.7 Close marks file

2.1 Start fixed loop for each pupil
2.2 percentage() equals (prelim mark() + course mark()) divided by 1.5
2.3 End fixed loop

3.1 top position equals first position
3.2 Start fixed loop from second pupil
3.3 If percentage() is greater than current top percentage Then
3.4 set position as new top position
3.5 End If
3.6 End fixed loop

4.1 Display “Top pupil is”, pupil name(top position), “with”, percentage(top position),
“percent”

16

Structure diagrams

The following structure diagram solves the same problem as the pseudocode:

• Top level design — the major steps of the design.

• Data flow — shows the information that must flow In or Out from the sub-
programs. In the example below, written underneath the top level design with
an arrow showing whether they are in or out.

• Refinements — break down the design from the top level into smaller steps.
They can be shown separately from the top level design or below the top level
design.

17

Wireframe (User Interface Design)

The design of the user interface (the visual layout that allows the user to interact with
the programming code) can be represented using a wireframe diagram.

A wireframe diagram is a visual representation of how the user interface will look and
it will show the position of different elements such as text, graphics, navigation etc. It
is also used as a visual representation to demonstrate the input and output of a
program.

A wireframe diagram can be a detailed sketch or detailed image as shown below.

The wireframe diagram should clearly show the program input and output.

Exam Mark Program

Input – text
box to display
the name,
prelim mark
and
coursework of
each pupil.
This will be
read in from a
file.

Title of the program

Click to read data

Button for the user to read in
program inputs from file

Click to calculate

Button for the user to calculate
percentage and find pupil with
top mark

Output –
text box to
display the
percentage,
name and
position of
the top
pupil.

18

Implementation

19

Sub-Programs

Sub-programs are named blocks of code which can be run from within another part
of the program.

When a sub-program is used like this we say it is “called”.

Sub-programs can be called from any part of the program and can be used over
again.

A sub-program may be called several times during the execution of a single
program.

Example

This program works out the area of a room in a building.

20

 The Input Validation lines of code can be put into sub-programs and called
 by the main program.

Why Create Sub-Programs?

Creating sub-programs makes the code more modular and readable.

Modular code allows sections of code to be self-contained.

Different sub-programs can be developed by different programmers without variable
name clashes

Sub-programs can be re-used without any extra coding which saves time.

Easier to identify errors.

21

Types of Sub-Program

There are two types of sub-program that can be used in procedural languages.

• Procedures

• Functions

Procedures and functions are self-contained sections of code that execute a
sequence of commands.

They are both given meaningful identifiers (names) which are used to call them.

Procedures

When procedures are called, variables (parameters) to be passed in or out of the
procedure are stated in brackets.

Procedures can pass any number of parameters in or out (or sometimes none).

Example

Consider creating the GetValidLength sub-program as a procedure.

The UserLen variable is declared in the main
program.

When the procedure is called, UserLen is
passed to it as a parameter

When it is called, the GetValidLength
procedure executes its lines of code
in order.

The length parameter is changed and
passed back to the main program.

22

Any number of parameters (variables) can be passed in or out of procedures.

Functions

When functions are called, variables (parameters) to be passed in only are stated
in brackets.

Functions can return only a single value.

The returned value from a function is assigned to a variable to be used in
subsequent operations in the program.

Example

Consider creating the GetValidLength sub-program as a function

The UserLen variable is declared in the main
program.

When the function is called, UserLen is used to
store the returned integer

When it is called, the
GetValidLength function
executes its lines of
code in order.

The length variable is
returned to the main
program and stored in
UserLen

23

Re-Using Sub-Programs

The most efficient use of sub-programs is when they can be re-used .

When coding procedures and functions, consideration should be given to making
them able to solve any related problem rather than one specific problem.

e.g. a calculator that can only solve the calculation 2+2 would be very limited.

Example

The procedures below are almost identical except for the range of values they
validate.

They could instead be made more generic by allowing the range of values to
be changed each time it is called.

The GetValidValue procedure can now be called to obtain a value within any
range specified.

24

The implementation of a reusable function would look like this.

25

Predefined Functions

Predefined functions are commands that can be used in any program to carry out a
calculation or format text and numbers in a particular way.

They are like shortcuts as they save you having to write your own lines of code to
carry out the function’s task.

There are many predefined functions (too many to list them all) and they vary slightly
between different programming languages.

See practical notes on how to implement the above predefined functions.

Function Purpose

Int Convert floating point numbers (decimal) to
integers

ASC Converts a character into its corresponding
ASCII code value (e.g. “A” into 65)

Char Convert a number into the corresponding
ASCII character (e.g. 65 into “A”)

Mod Divides two numbers and only returns the
remainder

Substring Function used to extract a substring from a
string

26

Parameter Passing

What is parameter passing?

Parameters are

• the variables or arrays that are passed in or out of procedures.

• the variables or arrays that are passed into functions

Parameter passing allows variables to be used and updated by sub-programs.

The program below uses three procedures.

Procedures must be declared before they are called.

The variables in brackets are
parameters required by the
procedures stored in UserLen

These parameters are sent to the
procedures to be used.

Each parameter is known as an
argument.

This line CALLS the procedure

This section DECLARES the procedure

27

The order in which parameters are listed is important.

Actual and Formal Parameters?

Parameters can be actual or formal.

Actual parameters contain the value which is to be passed to the sub-program’s
formal parameter.

Notice the order of the parameters
here…

…must be the same as the order here
– but the names can be different

These are known as actual
parameters

These are known as formal
parameters

28

Formal parameters are used by the sub-program and contain a copy of or link to
the values passed from the actual
parameters.

29

Scope of Variables

The scope of a variable is the area of code in which the variable is usable

i.e. how much of the program has access to it.

The scope of a variables can be either:

• Global

• Local

Global Variables

A global variable exists and can be accessed and changed from any part of the
program.

Global variables do not have to be passed into
procedures as parameters because the
procedure can access it without doing so.

Global variables reduce modularity of a
program and should be avoided wherever
possible.

The use of global variables reduces modularity because:

• Different programmers could use conflicting variable names which
would cause errors.

• Any procedure could accidentally alter a global variable as it doesn’t
have to be passed in to be used.

30

Local Variables

Local variables exist only within a procedure or function. They are declared
within a sub-program

They are not passed in or out and can only be used within the sub-program they
were declared in.

Local variables cannot be accessed from
out with their own sub-program which limits
their scope.

It is always preferable to limit the scope of a variable to an individual sub-program
wherever possible.

Limiting the scope of a variable is done by:

• Using local variables which can only be accessed with their own sub-
program.

• Using parameter passing to only pass to a sub-program the variables it
requires.

31

Data Types & Structures

Data Types

There are four main data types you need to know about:

Data Structures: 1 Dimensional Array

A 1D array is an ordered sequence of simple data types, all of
the same type.

Advantages over separate individual variables:

• Only one line of code required to create multiple values

• Can be traversed using a loop structure

• Parameter passing is easier

• Indexing allows each individual element to be referenced

Data Structures: String

A string is a special sort of array that contains characters. A
string is actually a just a list of single characters.

Strings can be joined using concatenation or extracted using
substrings.

32

Data Structures: Records / Array of Records

Records are customised data types created by the programmer. They can contain
several variables which can be of different data types.

When you create a record
structure, you are essentially
creating a database structure.

A record structure is created by giving the structure a name and defining the ‘fields’
required.

RECORD recordname IS
 {datatype fieldname1, datatype fieldname2, datatype fieldname3…}

An array of records is then declared which specifies the size of the array and the
record structure to use (as the data type):

 DECLARE arrayname(indexes) AS recordname

Notice, instead of declaring the array using a data type such as integer or string, we
have used the name of the record structure as the data type.

33

Example:

Create a record structure to store the information below for 10 pupils:

a) Defining the record structure:

RECORD Userdetails IS
 {STRING Firstname, STRING Surname, INTEGER Age, STRING House}

b) Declare an array of records.

DECLARE UserRecord(10) As Userdetails

Record values can now be initialised or updated as a complete record

SET UserRecord[1] TO {“Harry”, “Jones”, 37}

Or by referring to individual values

SET UserRecord[1].Firstname TO “Harry”

SET UserRecord[1].Surname TO “Jones”

SET UserRecord[1].Age TO 37

First Name Surname Age House

Harry Jones 14 Bute

Jenna White 12 Kintyre

Laura Cairns 15 Arran

34

Standard Algorithms

Standard Algorithms (Using Arrays)

Standard algorithms are sequences of code which are used regularly in different
programs to solve a particular problem.

The main algorithms you need to know at Higher are:

• Input Validation (N5 revision)

• Find Minimum

• Find Maximum

• Count Occurrences

• Linear Search

Find Minimum

Find Minimum is used to identify the smallest value in an array.

If used on the Ages array (right), Find Minimum
would return the value, 7

1. SET min TO ages[0]

2. FOR counter FROM 1 TO 4 DO
3. IF ages[counter] < min
4. SET min TO ages[counter]
5. END IF
6. END FOR

7. SEND “The lowest age is ”& min TO DISPLAY

1.Min is initialised to
match first item in array

 2.Repeat for each item in
array starting at item 2

 3.Check if current array
item is lower than Min

 4.If true, set Min to
match current array item

35

Find Maximum

Find Maximum is used to identify the largest value in an array.

If used on the Ages array above, Find Maximum
would return the value, 16

1. SET max TO ages[0]

2. FOR counter FROM 1 TO 4 DO
3. IF ages[counter] > max
4. SET max TO ages[counter]
5. END IF
6. END FOR

7. SEND “The highest age is ”& max TO DISPLAY

1.Max is initialised to
match first item in array

 2.Repeat for each item in
array starting at item 2

 3.Check if current array
item is higher than Max

 4.If true, set Max to
match current array item

36

Count Occurrences

Count Occurrences is used to identify how many times a particular value appears in
an array

If used on the Names array above for the name
“Betty”, Count Occurrences would return the
value, 2

1. RECEIVE target FROM KEYBOARD

2. SET numFound TO 0

3. FOR counter FROM 0 TO 4
4. IF names[counter] = target
 5. SET numFound TO numFound + 1
6. END IF
7. END FOR

8. SEND “The number found is ”& numFound TO DISPLAY

1. Ask user to enter
target value to count

 2. Initialise
numFound to 0

 3. Repeat for each
item in array

 4. Check if current
name matches target

 5. If true, increment
numFound by 1

37

Linear Search

Linear Search is used to identify whether or not an item is in a list, and which
position it occupies.

If used on the Names array above for the
name, “Betty”, Linear Search would return the
position, 3

1. RECEIVE target FROM KEYBOARD
2. SET found TO FALSE
3. SET positionTO 0

4. FOR counter FROM 0 TO 4
5. IF names[counter] = target
6. SET found TO TRUE
7. SET position TO counter
8. END IF
9. END FOR

10. IF found = TRUE
11. SEND “Found at position ”& position TO DISPLAY
12. ELSE
13. SEND “Not found”
14. END IF

1. Ask user to enter target
value to find

2-3. Initialise found “flag”
to False and position to 0

4. Repeat for each item in
array

5. Check if current name
matches target

 6-7. If true, set found “flag”
to true and position to
current loop value

38

Standard Algorithms (Using Record Structures)

Find Minimum

Find Minimum is used to identify the smallest value in an array of record structure.

If used on the UserDetails record structure below, Find Minimum would return the
value, 12.

RECORD Userdetails IS
 {STRING Firstname, STRING Surname, INTEGER Age, STRING House}

1. SET min TO UserDetails[0].ages

2. FOR counter FROM 1 TO 4 DO
3. IF UserDetails [counter].ages < min
4. SET min TO UserDetails [counter].ages
5. END IF
6. END FOR

7. SEND “The lowest age is ”& min TO DISPLAY

First Name Surname Age House

Harry Jones 14 Bute

Jenna White 12 Kintyre

Laura Cairns 15 Arran

Sam Kay 16 Arran

Harry Smith 14 Lomond

39

Find Maximum

Find Maximum is used to identify the largest value in an array of record structure.

If used on the UserDetails record structure below, Find Maximum would return the
value, 16.

RECORD Userdetails IS
 {STRING Firstname, STRING Surname, INTEGER Age, STRING House}

1. SET max TO UserDetails [0].ages

2. FOR counter FROM 1 TO 4 DO
3. IF UserDetails [counter].ages > max
4. SET max TO UserDetails [counter].ages
5. END IF
6. END FOR

7. SEND “The highest age is ”& max TO DISPLAY

First Name Surname Age House

Harry Jones 14 Bute

Jenna White 12 Kintyre

Laura Cairns 15 Arran

Sam Kay 16 Arran

Harry Smith 14 Lomond

40

Count Occurrences

Count Occurrences is used to identify how many times a particular value appears in
an array of record structure.

If used on the UserDetails record structure below for the name “Harry”, Count
Occurrences would return the value, 2

RECORD Userdetails IS
 {STRING Firstname, STRING Surname, INTEGER Age, STRING House}

1. RECEIVE target FROM KEYBOARD

2. SET numFound TO 0

3. FOR counter FROM 0 TO 4
4. IF UserDetails [counter].names = target
 5. SET numFound TO numFound + 1
6. END IF
7. END FOR

8. SEND “The number found is ”& numFound TO DISPLAY

First Name Surname Age House

Harry Jones 14 Bute

Jenna White 12 Kintyre

Laura Cairns 15 Arran

Sam Kay 16 Arran

Harry Smith 14 Lomond

41

Linear Search

Linear Search is used to identify whether or not an item is in a list, and which
position it occupies.

If used on the UserDetails record structure below for the name, “Harry”, Linear
Search would return the position, 4

RECORD Userdetails IS
 {STRING Firstname, STRING Surname, INTEGER Age, STRING House}

1. RECEIVE target FROM KEYBOARD
2. SET found TO FALSE
3. SET positionTO 0

4. FOR counter FROM 0 TO 4
5. IF UserDetails [counter].names = target
6. SET found TO TRUE
7. SET position TO counter
8. END IF
9. END FOR

10. IF found = TRUE
11. SEND “Found at position ”& position TO DISPLAY
12. ELSE
13. SEND “Not found”
14. END IF

First Name Surname Age House

Harry Jones 14 Bute

Jenna White 12 Kintyre

Laura Cairns 15 Arran

Sam Kay 16 Arran

Harry Smith 14 Lomond

42

Sequential File Operations

File handling is an alternative method to using the keyboard and display for input and
output.

The purpose of file operations is to enable information to be received directly from a
text file or sent directly to a text file.

Sending data to a file allows the output to be permanently stored.

The stored data could then be read back into the program the next time it is
executed.

Input from Sequential Files
If we wanted to input a score from a text file we would write:

OPEN “mytextfile.txt”

RECEIVE score FROM “mytextfile.txt”

CLOSE “mytextfile.txt”

Notice that the file has to be opened before it can be read and then closed again
when the input is complete.

Imagine a computer game kept a high scores table.

Without file handling, the high scores would only exist
until the game was turned off. The next time you
played, they would be gone.

File handling allows the scores to be saved by the
program and loaded in each time the game is started.

43

Output to Sequential Files
If we wanted to output a score to a text file we would write:

CREATE “mytextfile.txt”

OPEN “mytextfile.txt”

SEND score TO “mytextfile.txt”

CLOSE “mytextfile.txt”

Sequential File Operations

Open:

Create:

Read:

Write:

Close:

Initialises a file to prepare it to be read
from or written to

Establish a new file and give it a name

Copy data from a file and store it in
memory (variable/array)

Copy data memory (variable/array)
and place it in a file

Close a file

44

Testing

45

Testing Stage

The Testing Stage is necessary in order to identify and correct and errors in the
source code.

It is important that a carefully considered test plan is created. It is vital that a test
plan is produced before the solution is implemented to ensure the software is tested
systematically.

The test plan includes:

• Details of what is to be tested

• Test data values

• Expected outputs

• Type of testing

Test Plan

The test plan should ensure that testing is comprehensive.

Comprehensive testing is when the program is tested as thoroughly and completely
as possible.

Ideally, exhaustive testing is used where every possible input and route through the
program is tested – but this is not always practical or possible.

Comprehensive testing should involve using a range of normal, extreme and
exceptional test data

46

Example:

This program should accept three test scores between 0 and 50 and calculate
the total and average.

Error Types and Debugging
There are three types of error that can occur when writing and testing a program.

47

Debugging is the process of finding and correcting errors.

Some types of error are easier to identify than others because the programming
environment will help.

• The program will not run at all if there is a syntax error

• The program will stop running if an execution error is encountered

Logic errors are more difficult to find because the program will run but will produce
incorrect results. There are a number of debugging techniques that can be used to
identify logic errors.

• Dry Run

• Trace Table

• Trace Tools

• Breakpoints

• Watchpoints

Dry Run

A Dry Run involves manually stepping through
each line of code using test data.

As lines of code that make changes to variables
are reached, these changes are recorded using a
table.

This should highlight positions in the code where
variables are changing to unexpected values.

48

Trace Table

A trace table is similar to the table used to record variable values during a dry run.

Trace is often used to record the changes to variables when testing an algorithm for
a specific sub-program.

A trace table allows the tester to check the result of a number of different values of a
variable.

Trace Tools

Trace tools are a debugging feature of some programming environments.

Trace tools allow the program to be executed but the programmer can step through
one line at a time.

This lets the programmer view the line of code being executed.

49

Breakpoints

Breakpoints are another debugging feature of some programming environments.

Setting a breakpoint sets a point in the code where the program will stop
execution.

Breakpoints are set to stop executing at a particular line of code.

Once the program has stopped, the values of variables can be examined and
recorded in a trace table.

Watchpoint

A watchpoint is similar to a breakpoint but it does depend on reaching a particular
line of code.

Instead, the program is set to stop executing when the value of a variable changes.

Again, once the program has stopped, the values of variables can be inspected and
recorded in a trace table.

50

Evaluation

51

Evaluation Stage

During the Evaluation Stage, the overall success of the entire project is considered.
This is an objective review of the software to establish whether it meets the required
criteria.

An evaluation report would discuss:

Fitness for Purpose

This reflects whether the software carries out all the tasks required of the software
specification.

Your evaluation should identify any discrepancies between the software specification
and the completed software.

Efficient use of coding constructs

This reflects whether the software writers have used their knowledge of constructs to
help them create efficient code. For example using:

• suitable data types or structures

• conditional or fixed loops

• arrays

• nested selection

• procedures or functions with parameter passing

Your evaluation should identify where your coding has been efficient.

Usability

This reflects how intuitive the software is from a user’s perspective and should
include:

• the general user interface

• the user prompts

• the screen layout

• any help screens

Your evaluation should identify features of the software that have enhanced usability
for the user.

52

Maintainability

This reflects how easy it is to alter the software. The factors affecting maintainability
include:

• readability of the code — made easier by using meaningful variable names,
comments, indentation and whitespace

• amount of modularity — using functions and procedures effectively

Your evaluation should identify how your code helps with the maintainability of the
software.

Robustness

This reflects how well the software copes with errors during execution including:

• exceptional data, e.g. the computer crashing if “out of range”

• incorrect data entered

Your evaluation should reflect the testing that has been undertaken to meet the
specification, as well as to demonstrate some degree of robustness.

