Testing and documenting solutions

Testing should be systematic, exhaustive and comprehensive i.e. methodical with test reports of

predicted and actual results kept, and tested under all operational situations with a full range of test
data.

The three types of testing are normal, extreme and exceptional.

Example

Program should only accept whole
values in the range 0 to 100:

Normal data: 2, 34, 66 etc.

Extreme data: 0,100

Exceptional: -1, 156, abc, 2.9 etc.

Usability (beta) testing is when independent test groups and/or the client try out the software and report
back any bugs to the development team prior to final release.

Software Design and Development _

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjonOHygY3dAhWRaVAKHZifCeYQjRx6BAgBEAU&url=https://blogs.glowscotland.org.uk/nl/ColtnessHS-ComputingScience/2016/04/09/higher-design-notations-revision/&psig=AOvVaw1kx--CjfhTJVUrKb2phsKX&ust=1535451812350762

Test plan

A test plan will include:
The software specification against which the results of the tests will be evaluated.

The software specification is produced at the end of the analysis stage of the software development process, and is a legally
binding document which protects both client and developer. The design of the test plan must take this document into account.

A schedule for the testing process.

The testing schedule is necessary for the same reason as every other part of the software development process needs to
scheduled in order to deliver the project on time.

Details of what is and what is not to be tested.

Exhaustive testing - where every possible input and permutations of input to a program are tested - is not possible. Even a simple
input validation routine could theoretically need to be tested with every possible valid number, and the possibilities run into
millions once you have several different inputs which could be applied in any order. The tests selected should be ones which are
practical within the time available. There will always be external circumstances which cannot be tested until the software is in the
hands of the client or the user base. This is where acceptance testing (beta testing) is important.

The test data and the expected results.

A test plan will include normal, extreme and exceptional test data; the results expected from inputting this data to the program and
mwhether the result passes or fails the test.

Software Design and Development _|

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjonOHygY3dAhWRaVAKHZifCeYQjRx6BAgBEAU&url=https://blogs.glowscotland.org.uk/nl/ColtnessHS-ComputingScience/2016/04/09/higher-design-notations-revision/&psig=AOvVaw1kx--CjfhTJVUrKb2phsKX&ust=1535451812350762

Debugging and Errors

Debugging is the process of finding and correcting errors in code.

A syntax error is one which can be spotted by a translator: by a compiler when the source code is
translated into machine code, or by an interpreter while the code is being entered by the programmer.

Examples: misspelling of a keyword, or a mistake in the structure of a program like a missing END WHILE
in @ WHILE loop or a missing END IF in an IF condition.

An execution error is one which happens when the program is run, causing it to stop running (crash).
Examples include division by zero or trying to access an array index that's beyond the range of that array.
These types of error are not identified by the compiler or the interpreter, but appear when the program
IS run.

Logical errors, sometimes called semantic errors, are ones where the code is grammatically correct as
far as the interpreter or compiler is concerned, but does not do what the programmer intended. These
types of error may be spotted during the implementation stage, but may also be spotted during the
testing stage.

Software Design and Development _|

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjonOHygY3dAhWRaVAKHZifCeYQjRx6BAgBEAU&url=https://blogs.glowscotland.org.uk/nl/ColtnessHS-ComputingScience/2016/04/09/higher-design-notations-revision/&psig=AOvVaw1kx--CjfhTJVUrKb2phsKX&ust=1535451812350762

Debugging Tools

Dry runs

A dry run is simply a manual run-through the pseudocode or source code of the
program, usually taking notes of the values of variables at various points in the process
while doing so. In effect the person doing the dry run is taking the place of the
computer in order to check that the code is doing what they expect it to do. Keeping
track of the values of variables at different stages of the code execution is complicated
so normally the tester would use a table, either on paper or on computer to help.

Software Design and Development _

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjonOHygY3dAhWRaVAKHZifCeYQjRx6BAgBEAU&url=https://blogs.glowscotland.org.uk/nl/ColtnessHS-ComputingScience/2016/04/09/higher-design-notations-revision/&psig=AOvVaw1kx--CjfhTJVUrKb2phsKX&ust=1535451812350762

Debugging Tools

Trace tables

A trace table is similar to the table that would be used during a dry run, but is often used to test an
algorithm for a specific sub program when the tester wants to check the result of a number of different
values of a variable. A trace table and its results is an important element in the documentation of the

testing process.

no

nunbers[1]

maximrValue

cocunter | number [cocunter]

) numbers[2]
= mmbers[3]

W mumbers[0]

=
wn

O mumbers| 4]

SET numbers TO [3, 15, 4, 7, 8]

PROCEDURE findMaximum(numbers)

SET maximumValue TO numbers[0]

FOR counter FROM O TO 4 DO

15

IF maximumValue < numbers[counter] THEN

SET maximumValue TO numbers[counter]

END IF

13

END FOR

g

SEND [“The largest value was “& (STRING) maximumValue] TO DISPLAY

END PROCEDURE

o])) en) s oo 0| LN e oo |) onf def oo) en) | o)) o] 0| W G| Baf

Software Design and Development _

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjonOHygY3dAhWRaVAKHZifCeYQjRx6BAgBEAU&url=https://blogs.glowscotland.org.uk/nl/ColtnessHS-ComputingScience/2016/04/09/higher-design-notations-revision/&psig=AOvVaw1kx--CjfhTJVUrKb2phsKX&ust=1535451812350762

Trace Tools

Breakpoints

Some programming environments will enable the programmer to set a breakpoint. Setting a breakpoint
in @ program sets a point in the source code where the program will stop execution, at which point the
values of variables at this point can be examined. Breakpoints can be set to stop execution at a
particular point in code, or to stop when a variable has a particular value (watch) or a particular key is
pressed. Once the program has stopped, the values of the variables in use can be examined, or written
to a file for study later.

Watchpoints

Whereas a breakpoint is a specific place in a program where you want it to stop, a watchpoint is where
you set a program to stop when a variable has a specific value or when a particular event such as a
keypress, data entry or a menu selection has occurred. When using either a breakpoint or a watchpoint,
the purpose is to track the flow of data or the changes in values of variables in order to debug the code.

Software Design and Development _|

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjonOHygY3dAhWRaVAKHZifCeYQjRx6BAgBEAU&url=https://blogs.glowscotland.org.uk/nl/ColtnessHS-ComputingScience/2016/04/09/higher-design-notations-revision/&psig=AOvVaw1kx--CjfhTJVUrKb2phsKX&ust=1535451812350762

