
N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

As we’ve learned in previous units, when developing, software
teams will work through different phases of development.

Analysis

Design

Implementation

Testing

Evaluation

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

There is one more step that we have to be aware of during
Software development: Documentation.

Analysis

Design

Implementation

Testing

Documentation

Evaluation

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Development teams are usually made up of different people
with different roles, and each of these roles is usually
responsible for one of the development phases.

Analyst
the link between the

development team and

the client

Designer
Responsible for

designing the software

system

Client
the person/company

the software is being

built for

Developer
carries outs the

implementation of

software

Tester
checks the completed

program against the

design

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

During the Analysis phase, the Analyst will gather requirements
from the Client. It can be difficult for clients to communicate
what they need systems to be able to do, so the Analyst will use
different techniques to gather requirements to make sure these
are as accurate as possible.

In the Analysis phase the team should produce the program
purpose and the functional requirements (inputs, processes and
outputs).

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

During the Design phase the Designer will take the user
requirements and functional requirements and turn this into a
program plan.

In the Design phase the team should produce a list of variables
and data types, a user interface design and a program plan,
showing the algorithms that make up the program (this could be
a flowchart, a structure diagram or pseudocode).

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

During the Implementation phase, the Developer will turn the
program plan into code.

Developers will also test their code to make sure that it runs.
Developers are usually responsible for resolving syntax errors
and runtime errors as part of the Implementation phase.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

During the Testing phase the Tester will run the program
multiple times to check that it works, comparing the code to
the program plan created during the Design phase.

Testers will use normal, extreme and exceptional test data to
find logic errors.

In the Testing phase, the team should produce a testing table
with all the tests that have been run and whether they passed.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

During the Documentation phase, documentation is created to
help IT teams to install the software (technical guides) or to
help users to use the software (user guides or tutorials).

In the Documentation phase, the team should produce
technical guides, user guides and tutorials.

Internal commentary is another type of documentation, but
that is completed by the Developer during the Implementation
phase.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

During the Evaluation phase, several areas are checked.

• Fitness for purpose: the client checks if the program meets the
requirements identified during the Analysis phase

• Efficiency: efficient programs use appropriate constructs that reduce
the demand on RAM.

• Robustness: robust programs can cope with unexpected values
without crashing.

• Readability: Describes how easy it is to read and edit code,
particularly by a different developer. Readable code uses meaningful
variable names, white space and internal commentary.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

These steps are carried out in a deliberate order, called a
process. The most traditional process is called the waterfall
process, as it resembles a waterfall when visualised:

Analysis

Design

Implementation

Testing

Documentation

Evaluation

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

This development process is referred to as iterative as teams
can repeat steps if a problem is found. For example, if the
testers find a bug, the team can return to and repeat the
Implementation phase.

Analysis

Design

Implementation

Testing

Documentation

Evaluation

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Iteration, or repeating phases, can be very time consuming and
expensive. If the client identifies a problem in the Evaluation
then the team may have to go right back to the Analysis phase.

It’s important that each phase is completed carefully during the
first iteration so that the teams can minimise how many times
the teams have to iterate.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

During the Analysis phase of Software Design and Development
we need to consider two areas:

• the purpose of the software

• the functional requirements of the software

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

The purpose of a piece of software is often expressed as a
description of what the software will be used for, which can be
used to help create functional requirements.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Functional requirements are defined in terms of inputs,
process and outputs:

• What information will be input?

• What process should be applied to these variables? (often a
calculation, decision, or use of a pre-defined functions)

• What information will be displayed to the user?

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Program Purpose

A class of 20 pupils is raising money for charity. For each pupil,
the program will ask how much money they raised, validate that it
is a value larger than 0, and then add the amount to the total.
When there are no pupils left, the program should decide if the
class has won a prize by raising more than £150, displaying a
congratulations message if they have. The program will then
display the total amount raised.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Inputs Processes Outputs

Amount raised by pupil Validate amounts raised Congratulations

message

Calculate total Total

Decide if class have

won a prize

Functional Requirements

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

During the Design phase of Software Design and Development
we need to:

• identify the data types and structures required for a
problem

• design a program using one of various different
design techniques

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Variables are used to store a single piece of data.

When creating variables we store 2 pieces of information: the
name and the value

score = 215

name value

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

There are 5 data types we need to know for National 5:

Data Type Type of information stored

Character A single letter or symbol

String Multiple letters or symbols

Numeric (Integer) A positive or negative whole number

Numeric (Real) A positive or negative decimal number

Boolean True or False

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Arrays are a list of values of the same data type.

Arrays are used to stored related pieces of information e.g. we
could store names in one array, and test scores in a different
array.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

An array has one name but multiple values.

We give each value a number, called an index, which represents
the value’s position within the array.

Arrays begins at index 0, so the first item added to the array is
stored in index 0.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

A user interface design shows how the user is going to interact
with your code, i.e. what the user of your program will see
when they run your program.

In Python we have been providing the user with text prompts,
so our user interfaces will include any prompts we write to get
information from the user, or any information that we will
display to the user.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Program Purpose

A class of 20 pupils is raising money for charity. For each pupil,
the program will ask how much money they raised, validate that it
is a value larger than 0, and then add the amount to the total.
When there are no pupils left, the program should decide if the
class has won a prize by raising more than £150, displaying a
congratulations message if they have. The program will then
display the total amount raised.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Prompt (computer) Response (user)

How much money did you raise?

Congratulations, your class raised more than £150!

Your class raised a total of £_____

How much money did you raise?

How much money did you raise?

How much money did you raise?

________How much money did you raise?

How much money did you raise?

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Program planning is creating a solution to the program purpose.
During this stage you create algorithms (i.e. deciding what steps
are needed to solve the problem)

There are 3 design notations we need to be able to read and
understand in National 5:

• Pseudocode

• Structure Diagrams

• Flowcharts

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Pseudocode is a written design notation of the steps needed to
solve a problem. It is not based on a programming language,
meaning you don’t have to worry about syntax.

Pseudocode should:

• define the main steps of a program

• Refine/break down the main steps where possible (not all
main steps need refined)

• have indentation to help identify loops and selection
statements

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Program Purpose

A class of 20 pupils is raising money for charity. For each pupil,
the program will ask how much money they raised, validate that
it is a value larger than 0, and then add the amount to the
total. When there are no pupils left, the program should decide
if the class has won a prize by raising more than £150,
displaying a congratulations message if they have. The program
will then display the total amount raised.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

1. SET total TO 0

2. FOR LOOP 1 TO 20

3. Get valid amount from user

4. SET total TO total + amount

5. END LOOP

6. Decide if class gets a prize

7. Display total

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

1. SET total TO 0

2. FOR LOOP 1 TO 20

3. Get valid amount from user

4. SET total TO total + amount

5. END LOOP

6. Decide if class gets a prize

7. Display total

Refinements

3.1 RECEIVE amount FROM USER

3.2 WHILE amount < 0

3.3 SEND error message TO DISPLAY

3.4 RECEIVE amount FROM USER

3.5 END LOOP

6.1 IF total > 150 THEN

6.2 SEND “Congratulations” TO DISPLAY

6.3 END IF

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

SET score TO ROUND (score, 2)

SET numberOfCharacters TO LENGTH (firstname)

SET bonusBall TO RANDOM(1, 59)

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Structure diagrams are a visual representation of the steps
needed to solve a problem.

Structure diagrams are read from the top down, from left to right.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

The following symbols are used in structure diagrams:

Symbol Name Use

Process Used to show that a process is needed

(such as user input, a calculation or

displaying information)

Pre-

Defined

Function

Used to show that a pre-defined function will

be used (such as random, round or length)

instead of a developer writing the process

themselves.

00

00

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

The following symbols are used in structure diagrams:

Symbol Name Use

Loop Used to show that code should be repeated.

This is used for both fixed and conditional

loops

Selection Used to show that the program needs to

decide which path to follow i.e. different code

should be executed for different scenarios

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Program Purpose:

A class of 20 pupils is raising money for charity. For each pupil,
the program will ask how much money they raised, validate that
it is a value larger than 0, and then add the amount to the
total. When there are no pupils left, the program should decide
if the class has won a prize by raising more than £150,
displaying a congratulations message if they have. The program
will then display the total amount raised.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Problem:

calculate money

raised by class

Repeat 20

times

amount >

150Set total to 0 Display total

While

amount < 0
Get amount from

pupil

total = total +

amount

Display error

message

Get amount from

pupil

Display

congratulations

message

true

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Round score to 2

decimal places

Set bonusBall to a

Random number

between 1 and 59

Get length of

firstName

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Flowcharts are another visual data technique that are used to
represent the flow of data through a program.

Flowcharts are read by following the flow line (arrow).

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

The following symbols are used in flowcharts:

Symbol Name Use

Flow line Shows the direction of flow between

symbols

Terminal Shows the start and end of the program

Initialisation Shows the declaration of a variable, and

assignment to an initial value (i.e. set total to

0 for a running total algorithm)

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

The following symbols are used in flowcharts:

Symbol Name Use

Input/Output Shows data is input or output

Process Used to show that a process is needed,

e.g. a calculation

Pre-Defined

Function

Used to show that a pre-defined function

will be used (such as random, round or

length) instead of a developer writing the

process themselves.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

The following symbols are used in flowcharts:

Symbol Name Use

Decision Shows a decision has to be made, with branches for

different outcomes. Often used for conditional loops

and selection statements

Connector Used if you are running out of room on the page so

you can keep it all on one page

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

There is no dedicated symbol for a loop because of the way a
flow chart is read – by following the arrow. If the arrows returns
to a symbol that has already executed then a loop should be
used.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Fixed Loop Conditional Loop

counter =

number of

loops??

#do something

counter =

counter + 1

condition

met?

#do something

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Program Purpose

A class of 20 pupils is raising money for charity. For each pupil,
the program will ask how much money they raised, validate that
it is a value larger than 0, and then add the amount to the
total. When there are no pupils left, the program should decide
if the class has won a prize by raising more than £150,
displaying a congratulations message if they have. The program
will then display the total amount raised.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Round score to 2

decimal places

Set bonusBall to a

Random number

between 1 and 59

Get length of

firstName

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

There are 5 data types we need to know for National 5:

Data Type Types of information stored

Character A single letter or symbol

String Multiple letters or symbols

Numeric (Integer) A positive or negative whole number

Numeric (Real) A positive or negative decimal number

Boolean True or False

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

You should know how to:

• Add information to a variable

• Display information that’s stored in a variable

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Adding information to a variable

name=“John Doe”

Displaying information stored in a variable

print(name)

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

You should know how to:

• Add information to an array

• Display information that’s stored in an array

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

#declaring an array with 5 indices for strings

names = [“”]*5

#setting the value of the array at index 0 and 1

names[0] = “Sam Smith”

names[1] = “John Doe”

Note: it is good practice for the name of your array to be plural

You may find different techniques for populating an array
online, but this is the technique you should learn for National 5

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

#Display the contents of the whole array

print(names)

Output: [“Sam Smith”, “John Doe”, “”, “”, “”]

#Display one item in the array

print[names[0])

Output: Sam Smith

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

There are several computational constructs that you need to
know about for National 5:

• Assignment

• Basic arithmetic

• Concatenation

• Selection (simple and complex)

• Loops (fixed and conditional)

• Comparison operators

• Logic operators

• Pre-defined functions

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Assignment is the process of assigning a value to a variable, or
in other words setting a variable to a certain value.

This can be done at the start of a program when declaring a
variable (initialisation) or at any time throughout a program.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Pseudocode SET total to 0

Structure Diagram

Flowchart

Python total = 0

total = 0

total = 0total = 0 or

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

To perform calculations, we need to use arithmetic operators

Arithmetic Syntax

Add +

Subtract -

Divide /

Multiply *

Exponent (to the power of) **

Assignment (equals) =

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Remember that calculations in your programs follow the
principles of BODMAS, so make sure you use brackets to ensure
your calculations are executed in the correct order!

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Pseudocode SET tax TO (subtotal * 0.2)

Structure Diagram

Flowchart

Python tax = (subtotal*0.2)

tax =

(subtotal*0.2)

tax =

(subtotal*0.2)

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Concatenation is the process of joining strings together to make
a new string.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Pseudocode username = “13517” & surname & firstName

Structure Diagram

Flowchart

Python username = “13517” + surname + firstName

username = “13517” &

surname & firstName

username = “13517” &

surname & firstName

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

We often need to compare values to find out if they are equal,
not equal, or to find out which one is bigger or smaller.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Comparison Syntax

Is a equal to b a == b

Is a not equal to b a != b or a <> b or a ≠ b

Is a less than b a < b

Is a greater than b a > b

Is a less than or equal to b a <= b or a ≤ b

Is a greater than or equal to b a >= b or a ≥ b

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Using comparison operators will return either True or False. For
example, if variable a is 9 and variable b is 19

a > b would return false

a != b would return true

a < b would return true

We use comparison operators in selection statements. If the
comparison is True then the program will execute the code
inside the selection statement.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Programs need to be able to make decisions. IF statements
allow a program to select an action depending on the value
of specific variables.

IF statements make their decisions using a condition that can
either be True or False.

If the condition is met then the program will execute a piece of
code. If the condition is not met, the program will not execute the
piece of code.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Pseudocode

IF age < 17 THEN

SEND “you're too young to drive” TO DISPLAY

END IF

Structure Diagram

age < 17

Display “you’re

too young to

drive”

Yes

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Flowchart

Python
if age < 17:

print (“you’re too young to drive”)

age < 17

Display “you’re

too young to

drive”

true

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Sometimes we may want our programs to execute different
pieces of code under different circumstances.

We can use IF, ELSE statements if we want to do one thing if the
condition is met, and a different thing if the condition is not
met.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Pseudocode

IF age < 17 THEN

SEND “you're too young to drive” TO DISPLAY

ELSE

SEND “you’re old enough to drive” TO DISPLAY

END IF

Structure Diagram

age < 17

Display “you’re

too young to

drive”

Yes

Display

“you’re old

enough to drive”

No

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Flowchart

Python

if age < 17:

print (“you’re too young to drive”)

else:

print (“you’re old enough to drive”)

age < 17

Display “you’re

too young to

drive”

true

Display “you’re

old enough to

drive”

false

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

We can also use if statements to test multiple conditions, and
execute different pieces of code if each condition is met.

We achieve this using IF, ELSE IF, ELSE statements.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Pseudocode

IF age < 16 THEN

SEND “you're too young to drive” TO DISPLAY

ELSE IF age == 16 THEN

SEND “you can apply for a driving licence” TO

DISPLAY

ELSE

SEND “you’re old enough to drive”

END IF

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Structure

Diagram

age < 16

Display “you’re

too young to

drive”

Yes

age == 16

Display “you’re

old enough to

drive”

No

No

Display “you can

apply for a

driving licence”

Yes

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Flowchart

age < 16

Display “you’re

too young to

drive”

true

age == 16

false

false

Display “you’re

old enough to

drive”

Display “you

can apply for a

licence”

true

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Python

if age < 16:

print (“you’re too young to drive”)

elif age == 16:

print (“you can apply for a driving licence”)

else:

print (“you’re old enough to drive”)

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Logic operations are used to build more complex expressions,
meaning we can check the value of two or more variables at the
same time.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Operator Example Explanation

AND score > 0 AND

score < 10

The expression on both sides of the AND operator must

be true for AND to return TRUE. If either is FALSE the

overall result is FALSE.

OR age = 16 OR

age = 17

If the expression on either side of the OR operator is

TRUE then the overall result is TRUE. (This also returns

TRUE if both sides are TRUE).

NOT NOT (year ==

“S4”)

This operator inverts the result of the expression

following it - if the expression after the NOT operator is

TRUE, the result will be FALSE. If the expression after

the NOT operator is FALSE, the result will be TRUE

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

We use logic operators in selection statements to build complex
conditions. If the result of the whole condition is True then the
program will execute the code inside the selection statement.

Operator

AND Only executes if both conditions are true

OR Executes if any of the conditions are true

NOT Executes if the condition is false, as the NOT will invert

this and change it to true.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Pseudocode

IF age >= 17 AND drivingLicence == True THEN

SEND “you are allowed to drive” TO DISPLAY

END IF

Structure Diagram

age >= 17 and

drivingLicence

== True

Display “you are

allowed to drive”

Yes

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Flowchart

Python
if age >= 17 and drivingLicence == True:

print (“you are allowed to drive”)

age >= 17 and

drivingLicence

== True

Display “you

are allowed to

drive”

true

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Sometimes code in a program needs to be run multiple times.
This is called iteration, or repetition.

In programming, this is achieved using loops.

There are two types of loops

• Fixed loops

• Conditional loops

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

A fixed loop is used when we have an idea about how many
times the code will have to repeat.

You can hardcode how many times a fixed loop repeats, or you
can use a variable in your program that it set by the user before
the loop is executed.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Pseudocode

FOR loop = 1 to numberOfPupils

SEND “hello ” & name TO DISPLAY

END LOOP

Structure Diagram

Repeat for each

pupil

Display “hello” &

name

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Flowchart

Python
for counter in range (0, 10):

print (“hello ” + name)

counter = 1

Display “hello”

& name

true

counter ==

numberOfPupils

counter =

counter + 1

false

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

A conditional loop is used when we need to repeat code until a
condition is met, for example the program might keep asking a
user to enter their password until they enter the right one.

We do not know how many times the code is going to run before
we enter the loop.

There are two types of conditional loops:

• Pre-test

• Post-test

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Pre-test loops, or WHILE loops, test a condition at the very start
of the loop. If the condition is not met, then the code inside the
loop never executes.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Post-test loops, or DO UNTIL loops, test a condition at the end
of the loop. The code inside the loop executes at least once.

Python only has one type of loop, which is why we haven’t
looked at post-test loops in class, however you may come across
these loops in exam papers.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Pseudocode

WHILE userAnswer != correctAnswer

SEND “Wrong answer – try again!” TO DISPLAY

RECEIVE userAnswer FROM KEYBOARD

END LOOP

Structure Diagram

Repeat while

userAnswer !=

correctAnswer

Display “Wrong

answer – try again!”

Get userAnswer

from user

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Flowchart

Python

while userAnswer != correctAnswer:

print (“Wrong answer – try again!”)

userAnswer = input()

Get userAnswer

from user

true

userAnswer ==

correctAnswer

Display “Wrong

answer – try

again!”

false

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

A pre-defined function is some code that has already been
written and is ready for us to use (call).

Pre-defined functions are usually small tasks that are often
carried our by programmers. These functions have usually been
made as efficient as possible.

There are 3 pre-defined functions that we need to know for
National 5.

• Random

• Round

• Length

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Random is used to generate a random number

Round is used to round number to a certain number of decimal
places

Length is used to find out the length of a string (we can also
use this pre-defined function with arrays when we look at
those)

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

To call (use) a defined function we use brackets, e.g. round(),
randint() or len().

We also have to pass information in to these functions so that
the program knows what we want it to do. Passing information
into functions is done using parameters.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

The round() function is used to round a number to a certain
number of decimal places.

There are two pieces of information we need to give to this
function as parameters.

Parameter 1: what number do you want to round

Parameter 2: How many decimal places do you want to round
to?

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

The round() function is used to round a number to a certain
number of decimal places.

x = round(5.76234, 2)
print(x)

This would output 5.76

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

We can also pass in variables as parameters.

pi = 3.141592653589793
piRounded = round(pi, 2)
print(piRounded)

This would output 3.14

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

randint() is used to return a random number between the given
range.

There are two pieces of information we need to give to this
function as parameters.

Parameter 1: the lower limit

Parameter 2: the upper limit

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

randint() is used to return a random number between the given
range. Random functionality is not included in Python as
standard, so we have to import this code.

import random
print(random.randint(3, 9))

This could output 3, 4, 5, 6, 7, 8 or 9

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

len() is used to find the length of the string or array.

There is one piece of information we need to give to this
function as a parameter.

Parameter 1: the string you want to know the length of

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

len() is used to find the length of the string.

print(len(“Hello World!”))

This would output 12 – remember you need to include any
punctuation or spaces.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

We can also pass in variables as parameters.

string = "geeks"
print(len(string))

This would output 5

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

We can use the same pre-defined function to determine the
length of an array – in fact you can picture a string as an array
of characters.

names = [“”]*5

lengthOfArray = len(names)

print(lengthOfArray)

This would output 5

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

There are three standard algorithms you need to know for
National 5:

• Running Total

• Input Validation

• Traversing a 1D Array

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

The Running Total standard algorithm uses a fixed or conditional
loop, taking in values from a user and adding them together.

There are 4 steps to a running total algorithm:

1. Set total variable to 0

2. Start loop

3. Ask the user to enter a number

4. Add the number to the total

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

With a fixed loop

SET total TO 0

FOR loop = 1 to 20

RECEIVE amountRaised FROM KEYBOARD

total = total + amountRaised

END LOOP

SEND total TO DISPLAY

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

With a conditional loop

SET total TO 0

SET morePupils TO True

WHILE morePupils = True

RECEIVE amountRaised FROM KEYBOARD

total = total + amountRaised

RECEIVE morePupils FROM KEYBOARD

END LOOP

SEND total TO DISPLAY

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

With a fixed loop

Problem:

Running total

Repeat 20

times
Set total to 0

Get amount

from pupil

total = total +

amount

Display total

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

With a conditional loop

Problem:

Running total

Repeat while

morePupils

== true

Set total to 0

Get amount

from pupil

total = total +

amount

Display total

Get morePupils

from user

Set morePupils

to true

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

With a fixed loop

total = 0

counter = 1

Get amount

from pupil

total = total +

amount

counter

== 20

Display

total

counter =

counter + 1

true

false

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

With a conditional loop
total = 0

morePupils = True

Get amount

from pupil

total = total +

amount

morePupils

== True

Display

total

false

Get morePupils

from user

true

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

With a fixed loop

total = 0

for counter in range (0, 20):

amount = int(input(“Enter amount raised”))

total = total + amount

print(total)

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

With a conditional loop

total = 0

morePupils = “Y”

while morePupils == “Y”:

amount = int(input(“Enter amount raised”))
total = total + amount
morePupils = input(“Are there more pupils? Y/N”)

print(total)

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

The Input Validation standard algorithm uses a conditional loop,
and continues to ask the user for input until an acceptable
answer is provided.

There are 4 steps to an input validation algorithm:

1. Receive value from user

2. Start conditional loop if value is unacceptable

3. Display an error message

4. Receive value from user

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

RECEIVE age FROM KEYBOARD

WHILE age < 0 OR age > 120

SEND “Invalid age. Enter age between 0 and 99” TO DISPLAY

RECEIVE age FROM KEYBOARD

END LOOP

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Problem: Input

validation

While age <

0 or age >

120

Get age from

user

Display error

message

Get age from

user

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Get age

from user

Display error

message

age < 0 or

age >120

false

true

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

age = int(input(“Enter your age: ”)

while age < 0 or age > 120:

print(“Invalid age – enter 0-99 only”)
age = int(input(“Enter your age: ”)

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

We can use the index of an array to move through the array
within a fixed loop. This is called traversing the array.

This standard algorithm is usually used to add values to an
array, or to display every item in an array.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

SET names TO array of strings

FOR loop = 1 to 5

RECEIVE name FROM KEYBOARD

STORE name in array

END LOOP

FOR each item in the array

SEND name TO DISPLAY

END LOOP

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Problem:

Traversing 1D

Array

Repeat 5

times

Set names to

[“”]*5

Repeat for

each item

in array

Get name from

keyboard, store in

array

Display name

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

names = [“”]*5

counter = 1

Get pupil

name

Add pupil name

to array

counter

== 5

counter =

counter + 1

true

false

counter = 1

Display pupil

name

counter ==

length of

array

counter =

counter + 1

false

true

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

names = [“”]*5

for counter in range(0, 5):

names[counter] = input(“Enter the pupil’s name.”)

for counter in range(0, len(names)):

print(“Pupil name: ” + names[counter])

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Testing is the process of making sure that the program works as
intended – does the program match the design?

There are two areas we consider when testing software:

• Test data

• Types of errors

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Programs are tested to make sure they work as we expect.

This is achieved by creating test tables which contain different
test data. The test table contains the expected output for each
type of test data. As the program is tested, the actual output is
recorded in the table.

If the expected output matches the actual output then the
program works as expected.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

There are 3 types of test data:

Normal: data which the program should accept and which is
within the expected range for the program.

Extreme: data that is on the boundaries of what should
be acceptable, or on the boundaries of conditions within the
program.

Exceptional: data that would not be accepted by the program,
and should be rejected. Designed to test whether or not the
program can cope with unexpected data.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Here is a testing table we would use to test a program which
asks a school pupil to enter their age and displays if they should
be in primary or secondary.

During testing, the actual output column would be filled out. If
the actual output matches the expected output then the
program works as expected.

Test Type Test Data Expected Output Actual Output

Normal 7 Primary

Extreme 18 Secondary

Exceptional 21 Error message

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

There are 3 types of errors:

• Syntax errors

• Logic errors

• Run-time errors (or execution errors)

You need to be able to identify and fix each type of error.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Syntax errors are usually typing or spelling mistakes in
the program.

• Misspelling a reserved word

• Misspelling a variable name

• Missing brackets or colons

A reserved word is one that would turn purple or orange in
Python e.g. print or while

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Syntax errors are found before the program executes – the
development environment will not allow the program to run and
will display an error.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

A logic error happens when the program is syntactically correct,
but there is a mistake in the way a calculation or condition has
been written.

• Using < instead of >

• Using and instead of or

• Forgetting to use brackets in calculations

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Logic errors are found during the testing process. A test table is
written with the expected output, but when the program is
actually run it produces a different result.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Run-time errors (sometimes called execution errors) happens
when something unexpected happens while the program is
executing.

• Trying to divide by zero

• Trying to complete a calculation with a string

• Trying to access a file that doesn’t exist

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Run-time errors are found while the program is running. If
something unexpected happens the program will crash and
display a red error message.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

When evaluating a piece of software we consider several areas:

• Fitness for purpose

• Efficiency

• Robustness

• Readability

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Fitness for purpose answers the question “does your software
meet the requirements identified during the Analysis stage of
the software development lifecycle.

If you have a requirement to display information to the user,
and your program doesn’t do that, your program is not fit for
purpose.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Efficiency is evaluated in two areas:

• How much processing power is required to run the code?

• How much time does it take the developer to write the code?

There are three constructs that we've looked at that make code
more efficient.

• If statements

• Arrays

• Fixed loops

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Comparing these programs, we can see
that Program 2 is more efficient.

Program 1 will always evaluate all three if
conditions, even if the first one is
evaluated to true.

Program 2 will not evaluate further
conditions if the first condition is
evaluated to true.

This reduces the number of instructions
that need to be processed by the ALU.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Comparing these two
programs, we can see that
Program 2 is more efficient.

Program 1 requires many more
lines of code to be written,
which means more processing
required during translation. It
also requires more RAM to
store the name and value of
each piece of data.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Comparing these two
programs, we can see that
Program 2 is more efficient.

Program 1 requires many
more lines of code to be
written, which means more
processing required during
translation.

Note: conditional loops should not be discussed in terms of
efficiency as they do not replace an inefficient construct.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Robustness refers to how well your program is able to cope with
unexpected input. Unexpected data can be provided by files or
directly from users.

Programs use input validation to ensure that users provide
acceptable data, making them robust.

You can ensure that your program is robust by using exceptional
test data during the Testing phase of development.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

It’s important that your code is readable to help you and others
understand what you intend your code to do.

Most of the time, code bases are written by dozens of people so
it’s important that your code is readable so it’s easy for any
member of the team to make changes and fix bugs.

N 5 C o m p u t i n g S c i e n c e

S o f t w a r e D e s i g n & D e v e l o p m e n t

Readable code should:

• Use meaningful variable names

• Use internal commentary to help explain complex parts of
the code

• Have white space between different sections of code to
separate different pieces of logic

• Use indentation to help to identify loops and selection
statements

