
0

National 5
Software Design &

Development

1

Learning Intentions
The following provides details of skills, knowledge and understanding that can be covered in
the course assignment and the exam.

Development methodologies – Page 3
Describe and implement the phases of an iterative development process: analysis, design,
implementation, testing, documentation, and evaluation, within general programming
problem-solving.

Analysis – Page 4 -6
Identify the purpose and functional requirements of a problem that relates to the design
and implementation at this level, in terms of:

• inputs

• processes

• outputs

Design – Page 7 -10
Identify the data types and structures required for a problem that relates to the
implementation at this level, as listed below.
Describe, identify, and be able to read and understand:

• structure diagrams

• flowcharts

• pseudocode

Implementation (data types and structures) – Page 11 -14
Describe, exemplify, and implement appropriately the following data types and structures:

• character

• string

• numeric (integer and real)

• Boolean

• 1-D arrays

Implementation (computational constructs) – Page 15 -26
Describe, exemplify, and implement the appropriate constructs in a high-level (textual)
language:

• expressions to assign values

• expressions to return values using arithmetic operations (addition, subtraction,
multiplication, division, and exponentiation)

• expressions to concatenate strings

• selection constructs using simple conditional statements with <, >, ≤, ≥, =, ≠
operators

• selection constructs using complex conditional statements

2

• logical operators (AND, OR, NOT)

• iteration and repetition using fixed and conditional loops predefined functions (with
parameters):

o random
o round
o length

Implementation (algorithm specification) – Page 27 - 34
Read and explain code that makes use of the above constructs.
Describe, exemplify, and implement standard algorithms:

• input validation
• running total within loop

• traversing a 1-D array - Page 41

Testing – Page 43 - 48
Describe, identify, exemplify, and implement normal, extreme, and exceptional test data for
a specific problem, using a test table.
Describe and identify syntax, execution, and logic errors.

Evaluation – Page 48 - 53
Describe, identify, and exemplify the evaluation of a solution in terms of:

• fitness for purpose

• efficient use of coding constructs

• robustness

• readability:
o internal commentary
o meaningful identifiers
o indentation
o white space

3

DEVELOPMENT METHODOLOGIES

Waterfall Model

In the Waterfall Model, software is developed in a sequence of stages.

Each stage takes information from the previous stage and provides information to the next.

There are seven stages to this software development process.

Software development is an iterative process.

At any point, it may be necessary to revisit
earlier stages.

This could be in order to make improvements
due to new information or the presence of
errors.

4

ANALYSIS

The purpose of the Analysis stage is to investigate exactly what the software is supposed to
do.

It is important to read carefully what is required so that you have clear understanding of the
problem.

The Systems Analyst is responsible for gathering information by:

• Visiting and observing client’s workplace

• Interviewing client’s employees

• Studying documentation

• Issuing questionnaires

The result of the analysis stage is a document called the Software Specification.

The Software Specification details the exact requirements of the software to be produced.

The client will read the document and, if agreement is reached, both client and developer
will sign it.

The Software Specification then becomes a legally binding document which can be used to
resolve any disputes that may arise between the parties involved.

What does the client want the software to do?

Who will use the software?

What are the inputs, processes and outputs?

What hardware will the software uses?

5

The analysis stage should also help you to identify the program’s functional requirements.
The functional requirements include identifying the program’s:

• Inputs

• Processes

• Outputs

Example

Read the problem below. What are the important pieces of information?

Problem Specification
A program is required that will calculate the total score a student
achieved in three of their exams. The students will sit exams in Physics,
Computing and Maths.
The total score will be found by adding the scores in each subject. The
program should display the overall total score with a suitable
message.

Problem Specification
A program is required that will calculate the total score a student
achieved in three of their exams. The students will sit exams in
Physics, Computing and Maths.
The total score will be found by adding the scores in each subject. The
program should display the overall total score with a suitable
message.

6

Inputs, Processes, Outputs

Inputs are data items that must be entered by the user. Information we have to ask the
user for. This is the data that the program will take in.
Processes are the things the program will do with the data items. Calculations, formatting
etc. are processes.
Outputs are the data items that will be displayed by our program. This will usually be the
result of what the program is supposed to do.

Another Example

The inputs here are the three exam marks, the process is the calculation of the total mark
and the output is the total mark.

Identify Data Items

A Data items is needed for each input and output.
You may also need a data item to store each stage of a process (if the process is quite
complicated).
It is also important to identify the type of data (text, integer, decimal)

Example

Data Item Data Type

Physics Mark Integer

Maths Mark Integer

Computing Mark Integer

Total Mark Integer

7

DESIGN

During the Design stage, a plan for how to solve the problem, as described in the software
specification, is created. The design stage differs from the analysis stage because analysis is

about understanding the problem whereas design is about you will solve the
problem.

Why spend time on design?

The design stage is an extremely important part of software development.

If the program is not designed correctly, then it probably won’t do what it is supposed to.

Spending time on a good design makes it easier to write a program.

Decomposition
It can be difficult to know where to start with a large problem that has
many tasks to be performed.

Decomposing a problem involves breaking it down into smaller stages that
are easier to understand.

It is important to have clear steps for solving a problem that can be easily
explained to a computer.

Design Notations

A design notation is a method of listing the steps involved in solving a problem.

Design notations can be graphical:

• Flow Chart

• Structure Diagram

Or text based:

• Pseudocode

8

The advantage of graphical design notations over text based design notations is that they
give a visual representation of the program structure and order of events. This gives a clear
overview of the design and shows the flow of data making it easier to understand.

Flow Chart (graphical)

Structure Diagram (graphical)

Pseudocode (text based)

START

END

Get
Exam

Calculat
e Total

Display
Total

This type of diagram is read
from start to end

Steps are carried in order by
following the direction of
arrows.

This type of diagram is read from left to
right.

Steps are carried out in order by reading
from left to right.

9

RECEIVE physics FROM (Integer) Keyboard

RECEIVE maths FROM (Integer) Keyboard

RECEIVE computing FROM (Integer) Keyboard

SET total TO physics + maths + computing

SEND [“The total is ”:total] TO DISPLAY

Algorithm

Having identified the main steps required for our program, we can say that we have
developed an algorithm.

An algorithm is a list of step-by-step instructions for solving a problem.

The steps in an algorithm can now be followed and easily converted into lines of
programming code (e.g. Visual Basic).

Clear English statements
are used to describe the
steps of the program.
Steps are carried out in
sequence.

RECEIVE physics FROM (integer) Keyboard

RECEIVE maths FROM (integer) Keyboard

RECEIVE computing FROM (integer)
Keyboard

SET total TO physics + maths + computing

SEND [“The total is”:total] TO DISPLAY

10

Wireframe

The design of the user interface (the visual layout that allows the user to interact with the
programming code) can be represented using a wireframe diagram.

A wireframe diagram is a visual representation of how the user interface will look and it will show
the position of different elements such as text, graphics, navigation etc. It is also used as a visual
representation to demonstrate the input and output of a program.

A wireframe diagram can be a detailed sketch or detailed image as shown below.

Average Score Calculator

Submit

Physics Score

Maths Score

Computing Score

Button for the user to
submit their scores.
Once submitted the
calculator will output
the total score.

The user will input the
score they received in
each test.

Title of the program

Labels to identify
where to input the
information

Relevant Image

11

Implementation
The implementation stage is where the programming actually takes place.

The user interface for the program is created
and Design documentation is used and
converted into high level language instructions.

What is a variable?

A variable is used to store a single item of data in a program.

Imagine a variable as being like a box that you can only keep one
thing in at a time.

Creating a new variable is called declaring.

12

Each variable must be given a meaningful identifier
(name). Something that tells you what sort of thing it
stores.

Each variable also has to have a data type.

This decides whether the variable can store text or
numbers.

Data Types
There are five main data types you need to know about:

Data Type Contents Example

CHARACTER Single Letter “A”, “B”, “C”

STRING Several letters “Fred”, “Glasgow”

INTEGER Whole Number 2, 15, 18, 100

SINGLE (REAL) Real Number 2.45, 3.9, 12.994

BOOLEAN True/False TRUE, FALSE

1-D ARRAYS List of items Pupil_name(20)

This variable is used to
store a player’s score in
a game so we’ll call it
score.

The variable score is being
used to hold a whole
number so it is declared as
an integer data type.

13

How do variables work?

When a value is assigned to a variable, this is like putting something into the box.

SET score TO 15

If a new value is now assigned to the
same variable, the new value replaces
(overwrites) what is already there.

SET score TO 20

To display the contents of a variable,
we can use the variable’s name.

15

The score variable now
contains the value 15

20

The score variable now
contains the value 20

(15 has been deleted)

14

SEND score TO DISPLAY

Variables can be reset (cleared) by
initialising them. It is good practice to do this at the start of a program.

SET score TO 0

A new variable should be declared
for each piece of information you
need to store in your program.

Example

How many variables are required for this program?

A program asks 100m sprinters for their name and times in
two heats. It then works out their best time from the heats.

• Runner_name

• Heat1_time

• Heat2_time

• Best_time

Variable terms

20

20 would be displayed on the
screen because this is the value
that is in the score variable

0

Score is now set back
to 0

15

Declaring: Creating a new variable and setting its name and data type.

Assigning: Placing a value in a variable

Initialising: Resetting or clearing the contents of a variable

Expressions

Expressions in programming are lines of code that carry out a calculation and assign values
to variables.

Expressions change the values of variables. You can normally recognise an expression in a
programming language because it will a line of code containing an equals (=) symbol.

Expressions to Assign Values to Variables

Expressions are used to assign a value to a variable. This could be a newly created variable
that is being initialised.

SET total TO 0

SET firstname TO “ ”

SET price TO 0.00

SET found TO FALSE

Or a variable that already contains a value and is being changed.

SET total TO 15

SET firstname TO “Fred”

16

SET price TO 2.49

SET found TO TRUE

17

Expressions to Return Values using Arithmetic Operations

Arithmetic Operations are simply calculations that are performed within
a program.

The simplest example of an arithmetic operation in a program is adding
two numbers together.

 2 + 2 = 4

Arithmetic Operations that can be performed in a program are:

• Addition

• Subtraction

• Multiplication

• Division

• Exponent

The result of an arithmetic operation expression is returned and usually gets assigned to a
variable so that the variable stores the answer to the calculation.

SET answer TO 2 + 2

Variables can also be used as part of the arithmetic operation.

RECEIVE num1 FROM (Integer) KEYBOARD

RECEIVE num2 FROM (Integer) KEYBOARD

SET answer TO num1 + num2

The answer
variable will now
store the value 4

The user enters two
numbers, stored in

variables

The answer variable
stores the result of the

expression

18

For addition, the + symbol is used as in maths. Subtraction also uses the - symbol from
maths. However the other operations use different symbols.

Operation Symbol Example

Addition + SET sum TO num1 + num2

Subtraction - SET difference TO num1 - num2

Multiplication * SET product TO num1 * num2

Division / SET quotient TO num1 / num2

Exponent ^ SET power TO num1 ^ num2

Examples

SET answer TO num1 + num2

SET answer TO num1 - num2

SET answer TO num1 * num2

SET answer TO num1 / num2

SET answer TO num1 ^ num2

Concatenation

Concatenation is the joining together of two or more variables or the joining together of text and a
variable. The ampersand (&) symbol is used to represent concatenation.

Examples

SEND “Answer is: ” & answer TO DISPLAY

SEND “Hello: ” & firstName & surName TO DISPLAY

19

What is Selection?

Selection constructs are used in a program to allow it to ask a
question and take a different path depending on the answer.

How do you decide each day whether you have to go to school or not? When you wake up in
the morning, the rule you use might be:

 IF today is a weekday THEN

 go to school

The commands we would use in our algorithm are very similar to this rule.

1. IF today = “weekday” THEN

2. Go to school

3.END IF

 4. …

The commands between IF and END IF will only be carried out if the condition is true.

In the example above, we only go to school if the condition in line 1 is true. If the condition
is false, we do nothing other than move on to line 4.

Line 1 is our condition

Line 2 is only carried out if the
condition is true

20

We could decide that, on a day when we don’t go to school, we always go shopping.

Now, our morning rule might be:

IF today is a weekday THEN

 go to school

OR ELSE

go to the shops

We use the ELSE command to indicate what should happen when it is not a weekday.

1. IF today = “weekday” THEN

2. Go to school

3. ELSE

4. Go shopping

5. END IF

6. …

The program then moves on to line 6 which is definitely carried out.

Line 1 is our condition

Line 2 is only carried out if the
condition is true

Line 4 is only carried out if the
condition is false

21

Simple conditions can use the following operations:

Operation Symbol Example

Less than < num1 < num2

Greater than > num1 > num2

Less than or

equal to
<= num1 <= num2

Greater than

or equal to
>= num1 => num2

Equal = num1 = num2

Not Equal to <> num1 <> num2

22

What is Iteration?

Iteration or repetition is the process of repeating instructions in a
program a desired number of times.

Iteration is achieved in programming using loops.

Using loops in a program can drastically reduce the number of lines of code you have to
type.

Fixed Loops
Imagine you wanted to tell someone to walk up and down the stairs 5 times – but you can
only issue one instruction at a time.

1. Walk UP stairs

2. Walk DOWN stairs

3. Walk UP stairs

4. Walk DOWN stairs

5. Walk UP stairs

6. Walk DOWN stairs

7. Walk UP stairs

8. Walk DOWN stairs

9. Walk UP stairs

10. Walk DOWN stairs

There are actually only two commands here that are repeated over and over. What are
they?

A better method for this type of scenario is to use a loop and place the repeatininstructions
inside it.

1. REPEAT 5 TIMES

2. Walk UP stairs

3. Walk DOWN stairs

4. END REPEAT

These instructions
will repeat exactly 5

times

23

Conditional Loops

What if we wanted to ask someone to walk up and down the stairs
until lunch time? How many times will they do it? Do we know?

For this scenario, we don’t know exactly how many times our
friend will be able to walk up and down the stairs.

It could be 5 times, 50 times, 200 times or more.

A Conditional Loop allows us to repeat instructions until a particular event (condition)
occurs in our program.

1. REPEAT

2. Walk UP stairs

3. Walk DOWN stairs

4. UNTIL time = 12:30

These instructions
will be repeated

24

DO WHILE Conditional Loop

This loop starts repeating instructions. It checks the condition at the end of the loop. This
means that the repeated instructions will always be carried out at least once.

1. REPEAT

2. Walk UP stairs

3. Walk DOWN stairs

4. UNTIL time = 12:30

This means that the repeated instructions will always be carried out at least once.

WHILE Conditional Loop

This loop checks the condition at the start of the loop. It then starts repeating instructions.

1. WHILE time <> 12:30 DO

2. Walk UP stairs

3. Walk DOWN stairs

4. END WHILE

This means that the repeated instructions may never run at all (if it is already 12:30 at the
start of the loop).

These instructions
will be repeated

These instructions
will be repeated

25

What are Logical Operations?

Logical Operations are used to create complex conditions.

Complex conditions are conditions that have two or more parts to
them.

The main logical operators are:

• AND

• OR

• NOT

How do complex conditions work?

AND checks that both parts of a condition is true

circle1 = black AND circle2 = black

OR checks that either part of a condition is true

circle1 = black OR circle2 = black

NOT gives the opposite answer

1 2 1 2 1 2

TRUE FALSE FALSE

1 2

FALSE

1 2 1 2 1 2

TRUE TRUE TRUE

1 2

FALSE

26

NOT (circle1 = black AND circle2 = black)

NOT (circle1 = black OR circle2 = black)

Logical Operations are normally used in IF statements or Conditional Loops.

IF condition1 AND condition 2

IF condition1 OR condition 2

IF NOT (condition1 OR condition 2)

UNTIL condition1 AND condition 2

UNTIL condition1 OR condition 2

UNTIL NOT (condition1 OR condition 2)

1 2 1 2 1 2

FALSE TRUE TRUE

1 2

TRUE

1 2 1 2 1 2

FALSE FALSE FALSE

1 2

TRUE

27

Examples:

IF num1 > 3 OR num2 > 13 THEN

IF num1 > 2 AND num2 < 13 THEN

IF answer =“Yes OR answer =“No” THEN

 IF NOT (num1 = 5 AND num2 <10) THEN

UNTIL first = “Fred” AND second = “Jones”

UNTIL answer = “Yes” OR answer = “No”

28

Standard Algorithms

Input Validation
Input Validation is a Standard Algorithm that can be used in any program.

The purpose of Input Validation is to check that a user has entered data
that is in the format that was expected.

Imagine your program asks the user to enter a number between 10 and 20.

If the user enters a value out with this range, the Input Validation algorithm will keep asking
them to re-enter until they enter a valid number.

29

How does Input Validation work?

Let’s look at the 2 ways this can implemented in Visual Basic

Input Validation using a WHILE Loop (Algorithm)

RECEIVE number FROM KEYBOARD

WHILE number is out of range

SEND error message TO DISPLAY

RECEIVE number FROM KEYBOARD (Re-enter)

END LOOP

30

Explaining Input Validation Code – example

User is asked to enter a number between 1 and 10 inclusive.

Line 1 RECEIVE number FROM KEYBOARD

Line 2 WHILE number < 1 OR number > 10

Line 3 SEND error message TO DISPLAY

Line 4 RECEIVE number FROM KEYBOARD (Re-enter)

Line 5 END LOOP

• User is asked to enter a number between 1 and 10

• The conditional loop will execute if the user inputs a number less than 10 or

greater than 20. (Valid range = 10 to 20 inclusive)

• An error message will appear on the screen

• The user will be asked to re-enter a valid number. This will continue to loop

until they have entered between 10 and 20

• The loop will end once valid data has been entered.

31

Input Validation using a DO Loop Until (Algorithm)

Example VB6 Code

Example: Collecting month number from user

REPEAT

 RECEIVE month FROM KEYBOARD

 IF month <1 OR month >12 THEN

 SEND error message TO DISPLAY

 END IF

UNTIL month >= 1 AND month <=12

A conditional loop is used
in this algorithm.

It uses the complex
condition month <1 OR
month > 12 to validate
the month entered.

This makes sure that the
user has entered a value
between 1 and 12.

32

The Input Validation algorithm can be included in any program simply by changing the
conditions for the inputted data.

Example: Collecting age of secondary school pupils

REPEAT

 RECEIVE age FROM KEYBOARD

 IF age <11 OR age >18 THEN

 SEND error message TO DISPLAY

 END IF

UNTIL age>= 11 AND age <=18

Explaining Input Validation Code

Example 1: Explain what happens if the user enters the value 10

Line 1 REPEAT

Line 2 RECEIVE age FROM KEYBOARD

Line 3 IF age <11 OR age >18 THEN

Line 4 SEND error message TO DISPLAY

Line 5 END IF

Line 6 UNTIL age>= 11 AND age <=18

• The condition in line 3 would be evaluated as true because 10 is less than 11.

• Therefore line 4 would be executed, displaying an error message on screen

• The condition in line 5 would be evaluated as false because 10 is not between 11

and 18 so the conditional loop will return to line 1.

• In line 2 the user would be asked to re-enter their age.

A conditional loop is used
in this algorithm.

It uses the complex
condition age <11 OR
age > 18 to validate the
user’s age entered.

This makes sure that the
user has entered a value
between 11 and 18.

33

Example 2: Explain what happens if the user enters the value 15

Line 1 REPEAT

Line 2 RECEIVE age FROM KEYBOARD

Line 3 IF age <11 OR age >18 THEN

Line 4 SEND error message TO DISPLAY

Line 5 END IF

Line 6 UNTIL age>= 11 AND age <=18

• The condition in line 3 would be evaluated as false because 15 is not less than 11 or

greater than 18.

• Therefore line 4 would not be executed

The condition in line 5 would be evaluated as true because 15 is greater than 11 so the
conditional loop would terminate

The Input Validation algorithm can also be used for text entry where specific words or
characters are expected.

Example: Asking the user to enter Yes or No

REPEAT

 RECEIVE response FROM KEYBOARD

 IF response <> “Yes” AND response <> “No” THEN

 SEND error message TO DISPLAY

 END IF

UNTIL response = “Yes” OR response = “No”

34

Logical Operations

The use of logical operators is extremely important in input validation.

IF month <1 OR month >12 THEN

 SEND error message TO DISPLAY

END IF

UNTIL month >= 1 AND month <=12

IF response <> “Yes” AND response <> “No” THEN

 SEND error message TO DISPLAY

END IF

UNTIL response = “Yes” OR response = “No”

OR here

AND here

When validating a range of numbers

When validating for particular text

OR here

AND here

35

Standard Algorithms
The process of keeping a running total is used within a loop structure to keep an ongoing calculation
or tally of values.

Running Total using a fixed loop

DECLARE total INITIALLY 0

FOR loop FROM 1 TO 10 DO

RECEIVE number FROM KEYBOARD

SET total TO total + number

END FOR

Example VB6 Code

In this example, the user will be asked to enter how many points they received over 5
events. The points will be added to an overall total and then displayed to the screen.

Running total within a loop: example 2 (conditional loop)
This program is used to calculate the sum of an unknown number of values entered by the
user one at a time.

DECLARE total INITIALLY 0

REPEAT

RECEIVE number FROM KEYBOARD

SET total TO total + number

SEND “Do you wish to enter another value” TO DISPLAY

RECEIVE choice FROM KEYBOARD

LOOP UNTIL choice = ”no”

36

What is a 1D array?

A 1D array is a data structure. It is similar to a variable but it can store several items of data
as long as they are of the same type.

Imagine a variable as being like a list of items that must
all be on the same subject.

Creating a new array is called declaring

Like variables, each array must be given a meaningful identifier
(name), something that tells you what sort of thing it stores.

Array

name

ages

scores

prices

answers

This array is used to store
pupil ages so we’ll call it
ages.

37

Each array also has to have a data type.

All of the items in an array must have the same data type.

Each array also has to have its maximum size specified.

Each position in the array has an index number to identify it.

(Integer)

An age is a whole
number so we will set
this array’s data type to
Integer

(Integer)

(0)

(1)

(2)

(3)

(4)
This array can store five
items so its size is 5

38

How do arrays work?

When a value is assigned to an array, the position you want to put it into must also be given.

SET Ages(0) TO 15

Using a different index number will assign a value to a different position in the array.

SET Ages(3) TO 12

(0)

(1)

(2)

(3)

(4)

 15

Position 0 of the age
array now contains the
value 15.

(0)

(1)

(2)

(3)

(4)

 12

15

Position 3 of the age
array now contains the
value 12

39

If a new value is assigned to a position that already contains a value, that value is
overwritten.

SET Ages(3) TO 14

To display the contents of an array position, we can use the array’s name and the index
position.

SEND ages(3) TO DISPLAY

(0)

(1)

(2)

(3)

(4)

 14

15

12

Position 3 of the age
array now contains the
value 14

(12 will be overwritten)

14 would be displayed on
the screen because that
is the value that is
currently in position 3 of
the ages array

(0)

(1)

(2)

(3)

(4)

15

14

14

40

When do you need arrays?

A new array should be declared when there are a number of similar items of the same type
to be stored.

Working with Arrays

In a large array it may not be practical to enter information into each position individually.

 This array would require 50 lines
 of code just to fill it.

Using a loop makes life much easier.

For Each starts at position 1 in the array and repeats until it reaches the end of the array.

A program stores the
names and times of 10
100m sprinters.

SET ages(1) TO 12

SET ages(2) TO 14

SET ages(3) TO 11

SET ages(50) TO 13

…

FOR EACH age FROM ages

RECEIVE age FROM (Integer) KEYBOARD

END FOREACH

41

Loops can also be used when performing operations on each value in an array. The
pseudocode below would add up all of the ages in the array.

Arrays can be used to allow the user to select an item from the list to be used. The
pseudocode below will double the age of the user selected position from the ages array.

The value entered by the user must be within the range of the array size (1 to 50 in this
case).

Array terms

Declaring: Creating a new array and setting its name and data type.

Assigning: Placing a value in a array position

Initialising: Resetting or clearing the contents of a array

FOR EACH age FROM ages

END FOREACH

total = total + age

RECEIVE user_value FROM (Integer) KEYBOARD

SET doubled TO 2 * ages(user_value) KEYBOARD

The contents of the ages
array position selected
by the user will be used

in the calculation.

The user enters an
array position which is
stored in user_value

42

Standard Algorithms

Traversing a 1D array: example 1 (fixed loop)

This program is using a loop to access each element of an array, for the purposes of
processing the data in the array.

DECLARE allScores INITIALLY [12,34,23,54,32,67,26,23]

FOR counter FROM 0 TO 7 DO

IF allScores[counter] >= 50 THEN

SEND “Great Score” & allScores[counter] TO

DISPLAY

END IF

END FOR

Traversing a 1D array: example 2 (fixed ‘for each’ loop with running total
included)

This program is using a loop to access each element of an array, for the purposes of
processing the data in the array.

DECLARE allScores INITIALLY [12,34,23,54,32,67,26,23]

DECLARE total INITIALLY 0

DECLARE counter INITIALLY 0

FOR EACH FROM allScores DO

SET total TO total + allScores[counter]

SET counter TO counter + 1

END FOR

43

What are Predefined Functions?

Predefined functions are commands that can be used in any
program to carry out a calculation or format text and
numbers in a particular way.

They are like shortcuts as they save you having to write your
own lines of code to carry out the function’s task.

There are many predefined functions (too many to list them
all) and they vary slightly between different programming
languages.

Typical Predefined Functions

There are many more functions available.

If there is a particular operation you want to perform in your program, it is always a good
idea to look up a good website that will give you a list of available functions for the language
you are using.

http://howtostartprogramming.com/vb-net/

http://www.tutorialspoint.com/vb.net

http://www.functionx.com/vbnet/

Function Purpose

Math.Round
Round a number to a specified number of

decimal places.

Rnd Generate a random number

Len
Find the length of a string (how many characters

it contains)

http://howtostartprogramming.com/vb-net/
http://howtostartprogramming.com/vb-net/
http://www.tutorialspoint.com/vb.net/
http://www.functionx.com/vbnet/

44

Testing

Why Test?

Testing is an important stage of the Software Development Process.

It allows the finished program to be verified to ensure that it does
what it is supposed to do, doesn’t crash and produces correct and
reliable results.

Testing helps to find errors in the code before it is released.

It is important that a carefully considered test plan is created. It is vital that a test plan is
produced before the solution is implemented to ensure the software is tested
systematically.

Test Data

The test plan includes:

• Details of what is to be tested

• Test data values

• Expected outputs

• Type of testing

To ensure that a program is tested comprehensively and thoroughly, three types of test data
should be used.

• Normal

• Extreme

• Exceptional

45

A program i A program is designed to ask the user to enter a A
program is designed to ask the user to enter a number

between 1 and 100

Normal data in this case would be:
all numbers from 2 to 99

number between 1 and 100

Normal data in this case would be:

all numbers from 2 to 99s designed to ask the user to enter a
number A program is designed to ask the user to enter a

number between 10 and 20

Extreme data in this case would be:

10, 20between 10 and 20

Extreme data in this case would be:

10, 201 and 100

Normal data in this case would be:

all numbers from 2 to 99m is designed to ask the user to enter
a number between 1 and 100

Normal data in this case would be:
all numbers from 2 to 99

Normal Test Data
Normal test data checks that the program will accept the inputs from the user that it is
supposed to.

A program is designed to ask the user to enter a number
between 10 and 20

Normal data in this case would be:
11,12,13,14,15,16,17,18 and 19

A program is designed to ask the user to enter either “Yes” or
“No”

Normal data in this case would be:
Yes, No

A program is designed to ask the user to enter a number
between 1 and 100

Normal data in this case would be:
all numbers from 2 to 99

A program is designed to ask the user to enter either “Yes”
or “No”

Normal data in this case would be:
Yes, No

46

Extreme Test Data
Extreme test data checks that the program will accept the inputs from the user that are on
the boundaries of what it is acceptable.

A program is designed to ask the user to enter a number
between 10 and 20

Extreme data in this case would be:
10, 20

A program is designed to ask the user to enter a number
between 1 and 100

Extreme data in this case would be:
1, 100

A program is designed to ask the user to enter a number
between 0 and 50

Normal data in this case would be:
0, 50

A program is designed to ask the user to enter a number
between 10 and 20

Extreme data in this case would be:
10, 20

A program is designed to ask the user to enter a number
between 1 and 100

Extreme data in this case would be:
1, 100

A program is designed to ask the user to enter a number
between 0 and 50

Normal data in this case would be:
0, 50

47

Exceptional
Exceptional test data checks that the program uses input validation so that it will not accept
inputs from the user that it is not supposed to.

Test Plan

A test plan is required to ensure that a program is tested
systematically.

Systematic testing using a test plan means that you have
thought carefully about how you will test different parts of the
program.

You will also have a reason for every test you carry out, testing
should not be random.

A program is designed to ask the user to enter a number
between 10 and 20

Extceptional data in this case would be:
…7,8,9 and 21,22,23…

A program is designed to ask the user to enter a number

between 1 and 100

Exceptional data in this case would be:
…-2,-1, 0 and 101, 102, 103…

…

A program is designed to ask the user to enter either “Yes” or

“No”

Exceptional data in this case would be:
“Maybe”, “Perhaps”, 10

A program is designed to ask the user to enter a number
between 10 and 20

Extceptional data in this case would be:
…7,8,9 and 21,22,23…

A program is designed to ask the user to enter a number

between 1 and 100

Exceptional data in this case would be:
…-2,-1, 0 and 101, 102, 103…

A program is designed to ask the user to enter either “Yes”
or “No”

Exceptional data in this case would be:
“Maybe”, “Perhaps”, 10

48

Example

This program should accept three test scores between 0 and 50 and calculate the total and
average.

Test
No.

Reason Test Data Expected
Result

Actual
Result

Test
Outcome

1 Normal Test Score1: 34

Score2: 45

Score3: 29

Total: 108

Average: 36

Total: 108

Average: 36

PASS

2 Normal Test Score1: 12

Score2: 19

Score3: 2

Total: 33

Average: 11

Total: 33

Average: 11

PASS

3 Extreme

Test

Score1: 50

Score2: 50

Score3: 50

Total: 150

Average: 50

Total: 150

Average: 50

PASS

4 Extreme

Test

Score1: 0

Score2: 0

Score3: 0

Total: 0

Average: 0

Total: 150

Average: 50

PASS

5 Exceptional

Test

Score1: 65

Score2: 52

Score3: 90

Not Accepted Total: 207

Average`: 69

FAIL

6 Exceptional

Test

Score1: -1

Score2: -40

Score3: -100

Not Accepted Not Accepted PASS

49

Error Types

Error Type Description Example

Syntax Error The rules of the programming
language have been broken.
The program will not start.

FOR index IS 1 to 10
• is should be =

IF age = 5 THEEN
• Theen should be then

Execution Error Program is asked to do something
impossible or illegal.
The program will run but will
crash.

answer = total / 0
Set age TO “Fred”

Logic Error Program will run and will not
crash.
Does not produce the expected
results.

SET answer TO 6 * 4
SEND “6 + 4 =” & answer TO DISPLAY

• Expected result is 10 but error
in the first line means 24 is
displayed.

50

Evaluation

During the Evaluation Stage, the overall success of the entire project is
considered.

An evaluation report would discuss:

• Usabililty of the software (easy to use?)

• Accessibility of the software

• Efficiency of the code in terms of hardware use

• Does the solution meet the Software Specification requirements?

• What improvements could be made?

Fitness for purpose

Once a program has been analysed, designed, implemented and tested it is important to evaluate
the program to ensure it is fit for purpose.

Evaluating allows us to ensure the program does the job it was designed to do and think about any
improvements that could be made.

When evaluating a program we should ensure that the program:

• Is easily understood

• Is a completed solution (fully solves the problem)

• Is efficient

• Meets the design/specification given

Efficient use of coding constructs

Ensuring our program is efficient is important. An efficient program fully meets the specification
while making best use of coding constructs.

Removing unnecessary code, arriving at the final output in the quickest way and use of the correct
variables, data types and programming concepts allows for an efficient program.

51

Robustness

A program is robust if it has the ability to cope with errors or incorrect input for the user without the
program crashing.

For example, a program has been developed to ask the user to input their age as an integer.
However, a user accidentally types their age in as a string. If the program was to crash then it would
not be a robust program.

What is readability?

It is important for programs to be written in a readable fashion so that they can be easily
understood.

Imagine if you (or someone else) wanted to make changes to a program that you wrote a
year ago or more.

If you didn’t take care to make sure that it could be easily understood then it will probably
take a long time to make the changes.

Some methods of making a program readable are:

 Use meaningful identifiers - variable names

 Use internal commentary

 Use structured listings (indentation, capitalisation)

 Use plenty of white space

Meaningful Identifiers - Variable Names

If we were to write a program using variable names such as X, Y
and Z then it is difficult to know what values they are intended
to store.

Dim x as
Single

Dim y as
Single

Dim z as
Integer

x = y * z

52

It is much better to use sensible variables names like
total, PupilCost and pupils.

Internal Commentary

Internal commentary is used to give
descriptions of what lines or sections
of code do.

Internal Commentary is written
between the lines of actual code but is
ignored by the computer when
executing the program.

Example

Which of these programs is more readable?

Dim total as Single

Dim PupilCost as
Single

Dim pupils as
Integer

total = PupilCost *
Pupils

‘School Trip Costs

‘By J Bloggs

‘01/04/2013

‘declare variables

Dim total as Single

Dim PupilCost as Single

Dim pupils as Integer

‘calculate total cost

total = PupilCost * Pupils

For i = 1 To 5

Do

x(i) = InputBox("Please enter test score " & i)

if x(i) < 0 Or x(i) > 100 Then

MsgBox "Score must be between 0 and 100“

End If

Loop Until x(i) >= 0 And x(i) <= 100

Next i

average = (x(1) + x(2) + x(3) + x(4) + x(5)) / 5

FOR scores = 1 To 5 ‘loop for each test score

 DO

 tests(scores) = InputBox("Please enter test score " & scores)

 IF tests(scores) < 0 Or tests(scores) > 100 THEN

 MsgBox "Score must be between 0 and 100"

 END IF

 LOOP UNTIL tests(scores) >= 0 AND tests(scores) <= 100

NEXT scores

average = (tests(1) + tests(2) + tests(3) + tests(4) + tests(5)) / 5

53

Use of White Space

White space is used to make code more readable by leaving blank lines between
procedures.

This makes it easier to identify the control constructs in the code and to see where
procedures start and finish.

Structured Listings

Indentation between subprograms helps to give the program listing a structure. It makes it
easier to identify control constructs in the code, such as which sections of code are repeated
and which instructions are selected for execution in an IF ….THEN …..ELSE……END IF
constructs.

Also structured listings make it easier for programmer to identify where each subprogram
starts and ends.

54

